Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A= x^2-x +1=x^2-1/2.x.2+1/4 + 3/4=(x- 1/2)^2+3/4 lớn hơn hoặc = 3/4
b,c tương tự
\(x^2-6x+9=x^2-2.3x+3^2=\left(x-3\right)^2\)
\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b^2+\left(2b\right)^2=\left(\frac{1}{2}a+2b\right)^2\)
\(25+10x+x^2=5^2+2.5x+x^2=\left(5+x\right)^2\)
\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(\frac{1}{3}\right)^2-2.\frac{1}{3}y^4+\left(y^4\right)^2=\left(\frac{1}{3}-y^4\right)^2\)
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
Ta có \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\).
Hệ số tự do của \(\left(x^2+cx+d\right)^2\) là \(d^2\).
Vì vậy \(d^2=4\Leftrightarrow d=\pm2\).
Với \(d=2\) ta có:
\(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+2\right)^2\).
Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) ta có:
\(\left(x^2+cx+2\right)^2=x^4+c^2x^2+4+2cx^3+4cx+4x^2\)\(=x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\).
So sánh \(x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\) với \(x^4+ax^3+bx^2-8x+4\) ta được:
\(\hept{\begin{cases}2c=a\\c^2+4=b\\4c=-8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}c=-2\\a=-4\\b=8\end{cases}}\).
Tương tự cho trường hợp \(d=-2\).
\(C=4x^2-4x\)
\(C=4x\left(x-1\right)\)
\(D=2x^2+6x-5\)
\(D=2x^2-4x+10x-5\)
\(D=\left(2x^2-4x\right)+\left(10x-5\right)\)
\(D=2x\left(x-2\right)+5\left(2x-1\right)\)
C=42-4X
C=4X(X-1)
D=2X2+6X-5
D=2X2-4X+10X-5
D=(2X2-4X)+(10X-5)
D=2X(X-2)+5(2X-1)