Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, (2x-3)^3 = 8x^3 - 36x^2 + 54x - 27`
`b, (a+3b)^3 = a^3 + 9a^2b + 27ab^2 + 27b^3`
`c, (xy-1)^3 = x^3y^3 - 3x^2y^2 + 3xy -1`
a) \(\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)
\(=4x^4:-4x^2-8x^2y^2:-4x^2+12x^4y:-4x^2\)
\(=-x^2+2y^2-3x^2y\)
b) \(x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)
\(=x^3-x^2y^2-xy+x^2y^2-x^3\)
\(=-xy\)
\(\begin{array}{l}a) A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\\ = \left( {\frac{{x + 1 + x - 1}}{{{x^2} - 1}}} \right).\left( {\frac{{{x^2} - 1}}{x}} \right)\\ = \frac{{2x}}{{{x^2} - 1}}.\frac{{{x^2} - 1}}{x} = \frac{{2x.\left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = 2\end{array}\)
Vậy A = 2 không phụ thuộc vào giá trị của các biến
\(\begin{array}{l}b) B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{x\left( {y - x} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{ - x\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}} - \dfrac{{\left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2} - \left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{{\left( {x - y} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} = 1\end{array}\)
Vậy B = 1 không phụ thuộc vào giá trị của biến x
a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
\(A=\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\cdot\left(x-\dfrac{1}{x}\right)\)
\(=\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2-1}{x}\)
\(=\dfrac{2x}{x^2-1}\cdot\dfrac{x^2-1}{x}=\dfrac{2x}{x}=2\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne y\\x\ne0\\y\ne0\end{matrix}\right.\)
\(B=\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right)\cdot\dfrac{x^2y-xy^2}{\left(x-y\right)^2}\)
\(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right)\cdot\dfrac{xy\left(x-y\right)}{\left(x-y\right)^2}\)
\(=\left(\dfrac{x^2-y\left(2x-y\right)}{xy\left(x-y\right)}\right)\cdot\dfrac{xy}{x-y}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)^2}\cdot xy=\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}=1\)
Bài 2 :
a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)
\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)
a) \(\left(x-5\right)\left(a^2+5a+25\right)\)
\(=a^3-5^3\)
\(=a^3-125\)
b) \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(=x^3+\left(2y\right)^3\)
\(=x^3+8y^3\)
`a, (a-1)(a+1)(a^2+1)`
`= (a^2-1)(a^2+1)`
`= a^4-1`
`b, (xy+1)^2 - (xy-1)^2`
`= x^2y^2 + 2xy + 1 - x^2y^2 + 2xy - 1`
`= 4xy`
a) \(\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=\left(a^2-1\right)\left(a^2+1\right)\)
\(=a^4-1\)
b) \(\left(xy+1\right)^2-\left(xy-1\right)^2\)
\(=\left[\left(xy+1\right)-\left(xy-1\right)\right]\left[\left(xy+1\right)+\left(xy-1\right)\right]\)
\(=\left(xy+1-xy+1\right)\left(xy+1+xy-1\right)\)
\(=4xy\)