Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(25.5^3.\frac{1}{625}.5^2=5^2.5^3.\frac{1}{5^4}.5^2=\frac{5^7}{5^4}=5^3\)
b. \(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{2^4}=\frac{2^4}{2^4}=1\)
c. \(5^2.3^5.\left(\frac{3}{5}\right)^2=5^2.3^5.3^2.\frac{1}{5^2}==\frac{5^2}{5^2}.3^7=3^7\)
d. \(\left(\frac{1}{7}\right)^2.\frac{1}{7}.49^2=\frac{1}{7^3}.7^4=\frac{7^4}{7^3}=7\)
1.
a) \(-\frac{8}{27}=-\left(\frac{2}{3}\right)^3\)
b) \(\frac{81}{625}=\left(\frac{3}{5}\right)^4\)
2.
a) 27.81=2187=37
b) sai đề
\(a.\left(\frac{2}{5}\right)^5:\left(\frac{9}{25}\right)^5=\left(\frac{2\cdot25}{9\cdot5}\right)^5=\frac{10}{9}^5\)
\(b.25\cdot5^3\cdot\frac{1}{625}\cdot5^2=\frac{5^7}{5^4}=5^3\)
\(c.\frac{20^5\cdot5^{10}}{100^5}=\frac{2^{10}\cdot5^{15}}{2^{10}\cdot5^{10}}=5^5\)
\(d.\frac{1}{7}^2\cdot\frac{1}{7}\cdot49^2=\frac{7^4}{7^3}=7\)
Bài 1:
a) \(0,5-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)
\(=\frac{1}{2}-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{5}{41}+\frac{36}{41}\right)\)
\(=1-1\)
\(=0.\)
b) \(\left(-\frac{2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(-\frac{1}{3}+\frac{4}{7}\right):\frac{4}{5}\)
\(=-\frac{2}{3}+\frac{3}{7}:\frac{4}{5}-\frac{1}{3}+\frac{4}{7}:\frac{4}{5}\)
\(=\left[\left(-\frac{2}{3}\right)-\frac{1}{3}\right]+\left(\frac{3}{7}+\frac{4}{7}\right):\frac{4}{5}\)
\(=\left(-1\right)+1:\frac{4}{5}\)
\(=\left(-1\right)+\frac{5}{4}\)
\(=\frac{1}{4}.\)
c) \(\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.\sqrt{49}}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.7}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+21}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{205}{9}}\)
\(=\left(-\frac{3}{4}\right).\frac{\sqrt{205}}{3}\)
\(=-\frac{\sqrt{205}}{4}.\)
d) \(\left(-\frac{1}{3}\right)^2.\frac{4}{11}+1\frac{5}{11}.\left(\frac{1}{3}\right)^2\)
\(=\frac{1}{9}.\frac{4}{11}+\frac{16}{11}.\frac{1}{9}\)
\(=\frac{1}{9}.\left(\frac{4}{11}+\frac{16}{11}\right)\)
\(=\frac{1}{9}.\frac{20}{11}\)
\(=\frac{20}{99}.\)
Chúc bạn học tốt!
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)