Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(\frac{x^2}{4}+x+3=\frac{x^2}{4}+x+1+2=\left(\frac{x}{2}+1\right)^2+2>0;\forall x\)
b.
\(A=-3x^2+2x-5=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}\right)-\frac{14}{3}=-3\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le-\frac{14}{3}\)
\(A_{max}=-\frac{14}{3}\) khi \(x=\frac{1}{3}\)
c.
Đề thiếu (để ý 2 số hạng cuối)
\(A=x^4-2x^3+x^2+3x^2-6x+3-1\)
\(=\left(x^2-x\right)^2+3\left(x-1\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x=1\)
d.
\(27x^2-\frac{9}{2}x+\frac{3}{16}=3\left(9x^2-\frac{3}{2}x+\frac{1}{16}\right)=3\left(3x-\frac{1}{4}\right)^2\)
e.
\(=\left[\left(b+c\right)+a\right]^2+\left[\left(b+c\right)-a\right]^2+\left[a-\left(b-c\right)\right]^2+\left[a+\left(b-c\right)\right]^2\)
\(=2\left(b+c\right)^2+2a^2+2a^2+2\left(b-c\right)^2\)
\(=4a^2+2b^2+4bc+2c^2+2b^2-4bc+2c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
f.
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+b^2d^2+2ac.bd\right)+\left(a^2d^2+b^2c^2-2ad.bc\right)\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)
b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)
c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)
d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)
e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)
f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)
\(=\left(x-2\right)^2-3\) \(\forall x\in Z\)
\(\Rightarrow A_{min}=-3khix=2\)
\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)
dấu = xảy ra khi x-2=0
=> x=2
Vậy MinA=-3 khi x=2
\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)
dấu = xảy ra khi x+4=0
=> x=-4
Vậy MaxB=9 khi x=-4
\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
dấu = xảy ra khi \(x-\frac{5}{2}=0\)
=> x=\(\frac{5}{2}\)
Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)
\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
dấu = xảy ra khi \(x+\frac{5}{2}=0\)
=> x\(=-\frac{5}{2}\)
vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất
Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=(x−1)2+8≥8Amin=8⇔x=1B=(x+3)2−12≥−12Bmin=−12⇔x=−3C=x2−4x+3+9=(x−2)2+8≥8Cmin=8⇔x=2E=−(x+2)2+11≤11Emax=11⇔x=−2F=9−4x2≤9Fmax=9⇔x=0
HT
A=x2-2x+9
Ta có: A=x^2-2x+9
=> A=(x^2-2x+1)+8
=>A=(x-1)^2+8
vì (x-1)^2 > 0 với mọi x
=> (x-1)^2+8> 8 với mọi x
Dấu "=" xáy ra khi:
(x-1)^2=0=>x-1=0=>x=0+1=>x=1
Vậy Amin = 8 khi x=1
B=x^2+6x-3
=>B=-(x^2-6x+3)
=>B=-(x^2-2.3x+3^2)-3
=>B=-(x-3)^2-3
vì -(x-3)^2 < 0 với mọi x
=>-(x-3)^2-3< -3 với mọi x
Dấu '=' xảy ra khi x-3=0=>x=0+3=>x=3
Vậy B(min)=-3 khi x=3
chỗ này hình như là Bmax xem lại đề nhé
D=-x^2-4x+7
=>D=-x^2-2.2x+4+3
=>D=(-x^2-2.2x+4)+3
=>D=(-x-2)^2+3
Vì (-x-2)^2 <0 với mọi x
=>(-x-2)^2+3<3 với mọi x
Dấu "=" xảy ra khi x-2=0=>x=0+2=>x=2
Vậy Dmax=3 khi x=2
E=5-4x^2+4x
=>E=-4x^2+4x+5
=>E=(-2x)^2+2.2x+4+1
=>E=[(-2x)^2+2.2x+4]
=>E=(-2x+2)^2+1
Vì: (-2x+2)^2 < 0 với mọi x
=>(-2x+2)^2+1 < 1 với mọi x
Dấu "=" xảy ra khi 2x+2=0=>2x=-2=>x=-1
Vậy Emax=1 khi x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu '=' xảy ra khi x=-5
b: \(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4< =4\)
Dấu '=' xảy ra khi x=3
c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
d: \(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9< =9\)
Dấu '=' xảy ra khi x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
b) \(16x^2-8x+1=\left(4x-1\right)^2\)
c) \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left[\left(x+3\right)\left(x+6\right)\right]\left[\left(x+4\right)\left(x+5\right)\right]+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
Đật \(x^2+9x+19=t\) , pt trở thành
\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+9x+19\right)^2\)
d) \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
e) \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\)
a)_ Sai đề
N = (x2 - 4x - 5)(x2 - 4x - 19) + 49
Đặt x2 - 4x - 5 = t, ta có:
t(t - 14) + 49
t2 - 14t + 49
= (t - 7)2
= (x2 - 4x - 12)2
= (x2 - 6x + 2x - 12)2
= [x(x - 6) + 2(x - 6)]2
= [(x + 2)(x - 6)]2
[(x + 2)(x - 6)]2 lớn hơn hoặc bằng 0
Vậy Min N = 0 khi x = - 2 hoặc x = 6.
T = x2 - 6x + y2 - 2y + 12
= x2 - 2 . x . 3 + 9 + y2 - 2 . y . 1 + 1 + 2
= (x - 3)2 + (y - 1)2 + 2
(x - 3)2 lớn hơn hoặc bằng 0
(y - 1) lớn hơn hoặc bằng 0
(x - 3)2 + (y - 1)2 + 2 lớn hơn hoặc bằng 2
Vậy Min T = 2 khi x = 3 và y = 1.
Chúc bạn học tốt ^^
d/
\(\left(x^2\right)^2+2.x^2.2.x^3+\left(2.x^3\right)^2=\left(x^2+2.x^3\right)^2.\)
f/
\(\left(x^5\right)^2-2.x^5+1=\left(x^5-1\right)^2\)