Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 9x2-12xy+4y2 = (3x - 2y)2
b/ 25x2-10x+1 = (5x - 1)2
c/ 9x2-12x+4 = (3x - 2)2
d/ 4x2+20x+25 = (2x + 5)2
e/ x4-4x2+4 = (x2 - 2)2
a. \(9x^2+25-12xy+5y^2-10y\)
\(=\left(9x^2-12xy+4y^2\right)+\left(25+y^2-10y\right)\)
\(=9\left(x^2-\frac{4xy}{3}+\frac{4y^2}{9}\right)+\left(5-y\right)^2\)
\(=9\left(x-\frac{2y}{3}\right)^2+\left(5-y\right)^2\)
a) 9x2 + 25 - 12xy + 5y2 - 10y
= ( 9x2 - 12xy + 4y2 ) + ( y2 - 10y + 25 )
= ( 3x - 2y )2 + ( y - 5 )2
b) 13x2 + 4x + 12xy + 4y2 + 1
= ( 9x2 + 12xy + 4y2 ) + ( 4x2 + 4x + 1 )
= ( 3x + 2y )2 + ( 2x + 1 )2
c) x2 + 20 + 9y2 + 8x - 12y
= ( x2 + 8x + 16 ) + ( 9y2 - 12y + 4 )
= ( x + 4 )2 + ( 3y - 2 )2
2.
a. \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(5x-5\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b. \(x^2-2x-24=0\)
\(\Leftrightarrow\left(x^2-6x\right)+\left(4x-24\right)=0\)
\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
Bài 2: Tìm x
a) x2 - 6x + 5 = 0
<=> x2 - x - 5x + 5 = 0
<=> x(x - 1) - 5(x - 1) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy x ={1; 5}
b) x2 - 2x - 24 = 0
<=> x2 + 4x - 6x - 24 = 0
<=> x(x + 4) - 6(x + 4) = 0
<=> (x + 4)(x - 6) = 0
<=> \(\left[{}\begin{matrix}x+4=0\\x-6=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-4\\x=6\end{matrix}\right.\)
Vậy x ={-4; 6}
\(1.z^2-6z+5-t^2-4t\)
\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(3,x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
a) x2+10x+26+y2+2y
=x2+10x+25+y2+2y+1
=(x+5)2+(y+1)2
b) z2-6z+5-t2-4t
=z2-6z+9-t2-4t-4
=(z-3)2-(t2+4t+4)
=(z-3)2-(t+2)2
c)x2-2xy+2y2+2y+1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
d) 4x2-12x-y2+2y+8
=4x2-12x+9-y2+2y-1
=(2x-3)2-(y2-2y+1)
=(2x-3)2-(y-1)2
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
\(a.=\left(2x\right)^2-2.2x.2y+\left(2y\right)^2=\left(2x-2y\right)^2\)
\(b.=\left(3x\right)^2-2.3x.2+2^2=\left(3x-2\right)^2\)
a. 4x2+4y2-8xy=(2x)2+(2y)2-8xy
=(2x-2y)2
b.9x2-12x+4=(3x)2-12x+22
=(3x-2)2
c.xy2+1/4x2y4+1=xy2+(1/2xy2)2+1
=(1/2xy2+2)2
b:=y^2+2y+1+9x^2-12x+4
=(y+1)^2+(3x-2)^2
a:
SỬa đề: 5y^2
=y^2-10y+25+9x^2+4y^2-12xy
=(y-5)^2+(3x-2y)^2