K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(a-b^3\)

2: \(a^2-b^2\)

3: \(\left(a+b\right)^2\)

4: \(3m-5\)

5: a=3k+1

AH
Akai Haruma
Giáo viên
28 tháng 9

Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$

Theo bài ra ta có:

$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.

Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.

$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$

$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.

Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.

Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn 

Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.

AH
Akai Haruma
Giáo viên
28 tháng 9

Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.

Theo bài ra ta có:

$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$

Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.

$\Rightarrow a+b\vdots 11$.

Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$

$\Rightarrow a+b=11$

$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$

Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$

22 tháng 1 2018

1/28 chu so a

31 tháng 7 2017

a) 13 + 23 = 1 + 8 = 9 = 32

b) 13 + 23 + 33 = 1 + 8 + 27 = 36 = 62

c) 13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102

3:

a: a+b^2

b: a^2+b^2
c: (a+b)^2

d: 2(a+b)

e: 1/2*5*(a+b)=2,5a+2,5b

f: S=35t

3 tháng 3 2022

a) (x-y)2

b) (x-y)3

c) x+5y

d) x.(4+y)

e) (2k+1)2+(2k+3)2

sorry nha mình chỉ bt đến đây thôi

7 tháng 3 2022

a) \(\left(x-y\right)^2\)

b) \(\left(x-y\right)^3\)

c)  \(x+5y\)

d) \(x.\left(4+y\right)\)

e) \(\left(2k+1\right)^2+\left(2k+3\right)^2\)

f)    \(a+\frac{1}{a}\)\(\left(a\inℚ;a\ne0\right)\)

g)    \(\left(2k\right)^2+\left(2k+2\right)^2\)

a: \(S=\dfrac{a+b}{2}\cdot h\)

b: \(\left(2a+1\right)^2+\left(2a+3\right)^2\)

c: \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)