\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

a. ( a + b + c)2 + a2 + b2 + c2

= a2 + b2 + c2 + 2ab + 2ac + 2bc + a2 + b2 + c2

= (a+b)2 + (b+c)2 + (a+c)2

b. 2.(a-b).(c-b) + 2.(b-a).(c-a) + 2.(b-c).(a-c)

đặt a - b = x; b-c = y; c-a = z => x + y + z = 0 (1)

ta có: 2.x.(-y) + 2.(-x).z + 2.y.(-z)

= -2xy - 2xz - 2yz  = -2.(xy+xz+yz)  

ta có: (x+y+z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz

 02 = x2 + y2 + z2 + 2.(xy+yz+xz)

=> x2 + y2 + z2  = -2.(xy+yz+xz) (2)

Từ (2) => 2.(a-b).(c-b) + 2.(b-a) .(c-a) + 2.(b-c).(a-c) = x2 + y2 + z2

= (a-b)2 + (b-c)2 + (c-a)2

a: \(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)

\(=a^2+2ab+b^2+b^2+2bc+c^2+a^2+2ac+c^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)

b: \(=2\left(a-b\right)\left(c-b\right)-2\left(a-b\right)\left(c-a\right)+2\left(b-c\right)\left(a-c\right)\)

\(=2\left(a-b\right)\left(c-b-c+a\right)+2\left(b-c\right)\left(a-c\right)\)

\(=2\left(a-b\right)\left(a-b\right)+2\left(b-c\right)\left(a-c\right)\)

\(=2\left(a^2-2ab+b^2+ab-bc-ac+c^2\right)\)

\(=2\left(a^2+b^2-ab-bc-ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\)

5 tháng 10 2017

Bài 2 :

a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)

\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)

a: \(=a^2-b^4\)

b: \(=\left(a^2+2a\right)^2-9\)

c: \(=a^2-\left(2a+3\right)^2\)

d: \(=a^4-\left(2a-3\right)^2\)

e: \(=\left(-a^2-2a+3\right)^2\)

g: \(=4a^2-a^4\)

7 tháng 8 2017

1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2

= ( a2 + 2ab +b) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )

= ( a + b )2 + ( a + c )+ ( b + c )2

1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c)

= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2

= 2a2 + 2b+ 2c2 - 2ab - 2ac - 2bc

= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )

= (a-b)2 + (a-c)+ (b-c)2

15 tháng 8 2018

Bài cuối hơi khó nhìn, bạn thông cảm nhé! ^^

undefinedundefined

15 tháng 8 2018

a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+c^2a-c^2b+b^2\left(c-a\right)\)

\(=\left(a^2b-c^2b\right)-\left(a^2c-c^2a\right)-b^2\left(a-c\right)\)

\(=b\left(a^2-c^2\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=b\left(a-c\right)\left(a+c\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a+c\right)-ac-b^2\right]\)

\(=\left(a-c\right)\left(ab+bc-ac-b^2\right)\)

\(=\left(a-c\right)\left[\left(ab-b^2\right)+\left(bc-ac\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)+c\left(b-a\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)

b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3b-a^3c+c^3a-c^3b+b^3\left(c-a\right)\)

\(=\left(a^3b-c^3b\right)-\left(a^3c-c^3a\right)-b^3\left(a-c\right)\)

\(=b\left(a^3-c^3\right)-ac\left(a^2-c^2\right)-b^3\left(a-c\right)\)

\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-ac\left(a-c\right)\left(a+c\right)-b^3\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a^2+ac+c^2\right)-ac\left(a+c\right)-b^3\right]\)

\(=\left(a-c\right)\left(ba^2+abc+bc^2-a^2c-ac^2-b^3\right)\)

\(=\left(a-c\right)\left[\left(ba^2-a^2c\right)+\left(abc-ac^2\right)+\left(bc^2-b^3\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)+b\left(c^2-b^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b^2-c^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b-c\right)\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left[a^2+ac-b\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a^2+ac-b^2-bc\right)\)

\(=\left(a-c\right)\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)