Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({a^3} + 12{{\rm{a}}^2} + 48{\rm{a}} + 64 \\= {a^3} + 3{{\rm{a}}^2}.4 + 3{\rm{a}}{.4^2} + {4^3} \\= {\left( {a + 4} \right)^3}\)
b) \({x^3} - 9{{\rm{x}}^2} + 27{\rm{x}} - 27 \\= {x^3} - 3.{x^2}.3 + 3.x{.3^2} - {3^3} \\= {\left( {x - 3} \right)^3}\)
c) \(8{{\rm{a}}^3} - 12{{\rm{a}}^2}b + 6{\rm{a}}{b^2} - {b^3} \\= {\left( {2{\rm{a}}} \right)^2} - 3.{\left( {2{\rm{a}}} \right)^2}.b + 3.2{\rm{a}}.{b^2} - {b^3} \\= {\left( {2{\rm{a}} - b} \right)^3}\)
d) \(27{{\rm{x}}^3} + 54{{\rm{x}}^2}y + 36{\rm{x}}{y^2} + 8{y^3}\\= {\left( {3{\rm{x}}} \right)^3} + 3.{\left( {3{\rm{x}}} \right)^2}.2y + 3.3{\rm{x}}.{\left( {2y} \right)^2} + {\left( {2y} \right)^3} \\= {\left( {3{\rm{x}} + 2y} \right)^3}\)
\(a){x^2} + \dfrac{1}{2}x + \dfrac{1}{{16}} \\= {x^2} + 2.x.\dfrac{1}{4} + {\left( {\dfrac{1}{4}} \right)^2} \\= {\left( {x + \dfrac{1}{4}} \right)^2}\)
\(b)25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2} \\= {\left( {5{\rm{x}}} \right)^2} - 2.5{\rm{x}}.y + {y^2} \\= {\left( {5{\rm{x}} - y} \right)^2}\)
\(\begin{array}{l}c){x^3} + 9{{\rm{x}}^2}y + 27{\rm{x}}{y^2} + 27{y^3}\\ = {x^3} + 3{{\rm{x}}^2}.3y + 3.x.{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\\ = {\left( {x + 3y} \right)^3}\end{array}\)
\(\begin{array}{l}d)64{{\rm{x}}^3} - 48{{\rm{x}}^2}y + 12{\rm{x}}{y^2} - {y^3}\\ = {\left( {4{\rm{x}}} \right)^3} - 3.{\left( {4{\rm{x}}} \right)^2}.y + 3.4{\rm{x}}.{y^2} - {y^3}\\ = {\left( {4{\rm{x}} - y} \right)^3}\end{array}\)
\(\begin{array}{l}8{x^3} - 36{x^2}y + 54x{y^2} - 27{y^3}\\ = {\left( {2x} \right)^3} - 3.{\left( {2x} \right)^2}.3y + 3.\left( {2x} \right).{\left( {3y} \right)^2} - {\left( {3y} \right)^3}\\ = {\left( {2x - 3y} \right)^3}\end{array}\)
\(a)27{{\rm{x}}^3} + 1 = {\left( {3{\rm{x}}} \right)^3} + 1 = \left( {3{\rm{x}} + 1} \right).\left[ {{{\left( {3{\rm{x}}} \right)}^2} - 3{\rm{x}}.1 + {1^2}} \right] = \left( {3{\rm{x}} + 1} \right)\left( {9{{\rm{x}}^2} - 3{\rm{x}} + 1} \right)\)
\(b)64 - 8{y^3} = {4^3} - {\left( {2y} \right)^3} = \left( {4 - 2y} \right)\left[ {{4^2} + 4.2y + {{\left( {2y} \right)}^2}} \right] = \left( {4 - 2y} \right)\left( {16 + 8y + 4{y^2}} \right)\)
\(a)4{{\rm{x}}^2} - 12{\rm{x}}y + 9{y^2} = {\left( {2{\rm{x}}} \right)^2} - 2.2{\rm{x}}.3y + {\left( {3y} \right)^2} = {\left( {2{\rm{x}} - 3y} \right)^2}\)
\(b){x^3} + 9{{\rm{x}}^2} + 27{\rm{x}} + 27 = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {\left( {x + 3} \right)^3}\)
\(c)8{y^3} - 12{y^2} + 6y - 1 = {\left( {2y} \right)^3} - 3.{\left( {2y} \right)^2}.1 + 3.2y{.1^2} - {1^3} = {\left( {2y - 1} \right)^3}\)
\(\begin{array}{l}d) {\left( {2{\rm{x}} + y} \right)^2} - 4{y^2}\\ = {\left( {2{\rm{x}} + y} \right)^2} - {\left( {2y} \right)^2}\\ = \left( {2{\rm{x}} + y + 2y} \right)\left( {2{\rm{x}} + y - 2y} \right) = \left( {2{\rm{x}} + 3y} \right)\left( {2{\rm{x}} - y} \right)\end{array}\)
\(e) 27{y^3} + 8 = {\left( {3y} \right)^3} + {2^3} = \left( {3y + 2} \right)\left( {9{y^2} - 6y + 4} \right)\)
\(g) 64 - 125{{\rm{x}}^3} = {4^3} - {\left( {5{\rm{x}}} \right)^3} = \left( {4 - 5{\rm{x}}} \right)\left( {16 + 20{\rm{x}} + 25{{\rm{x}}^2}} \right)\)
a) \(27 + 54x + 36{x^2} + 8{x^3} = {3^3} + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} + {\left( {2x} \right)^3} = {\left( {3 + 2x} \right)^3}\)
b) \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3} = {\left( {4x} \right)^3} - 3.{\left( {4x} \right)^2}.3y + 3.4x.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {4x - 3y} \right)^3}\)
a) Các biểu thức: \(\dfrac{1}{5}x{y^2}{z^3}; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2}\) là đơn thức
b) Các biểu thức: \(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1\) là đa thức
a) \(25{{\rm{x}}^2} - 16 = {\left( {5{\rm{x}}} \right)^2} - {4^2} = \left( {5{\rm{x}} + 4} \right)\left( {5{\rm{x}} - 4} \right)\)
b) \(8{{\rm{x}}^3} + 1 = {\left( {2{\rm{x}}} \right)^3} + {1^3} = \left( {2{\rm{x}} + 1} \right)\left( {4{{\rm{x}}^2} - 2{\rm{x}} + 1} \right)\)
c) \(8{{\rm{x}}^3} - 125 = {\left( {2{\rm{x}}} \right)^3} - {5^3} = \left( {2{\rm{x}} - 5} \right)\left( {4{{\rm{x}}^2} + 10{\rm{x + }}25} \right)\)
d) \(27{{\rm{x}}^3} - {y^3} = {\left( {3x} \right)^3} - {y^3} = \left( {3{\rm{x}} - y} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}}y + {y^2}} \right)\)
e) \(16{{\rm{a}}^2} - 9{b^2} = {\left( {4{\rm{a}}} \right)^2} - {\left( {3b} \right)^2} = \left( {4{\rm{a}} - 3b} \right)\left( {4{\rm{a}} + 3b} \right)\)
g) \(125{{\rm{x}}^3} + 27{y^3} = {\left( {5{\rm{x}}} \right)^3} + {\left( {3y} \right)^3} = \left( {5{\rm{x}} + 3y} \right)\left( {25{{\rm{x}}^2} - 15{\rm{x}}y + 9{y^2}} \right)\)
a) Vì x = 1,2 và x + y = 6,2 nên \(y = 6,2 - x = 6,2 - 1,2 = 5\)
\(\begin{array}{l}P = \left( {5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2}} \right) - \left( {{x^2} + {y^2}} \right) - \left( {4{{\rm{x}}^2} - 5{\rm{x}}y + 1} \right)\\P = 5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2} - {x^2} - {y^2} - 4{{\rm{x}}^2} + 5{\rm{x}}y - 1\\P = \left( {5{{\rm{x}}^2} - {x^2} - 4{{\rm{x}}^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 2{\rm{x}}y + 5{\rm{x}}y} \right)\\P = 3{\rm{x}}y - 1 \end{array}\)
Thay x = 1,2; y = 5 vào biểu thức P = 3xy - 1 ta được
\(P = 3.1,2.5 - 1 = 17\)
Vậy P = 17
b) Ta có:
\(\begin{array}{l}\left( {{x^2} - 5{\rm{x}} + 4} \right)\left( {2{\rm{x}} + 3} \right) - \left( {2{{\rm{x}}^2} - x - 10} \right)\left( {x - 3} \right)\\ = {x^2}.2{\rm{x}} + {x^2}.3 - 5{\rm{x}}.2{\rm{x}} - 5{\rm{x}}.3 + 4.2{\rm{x}} + 4.3 - {\rm{[2}}{{\rm{x}}^2}.x + 2{{\rm{x}}^2}.( - 3) - x.x - x.( - 3) - 10.x - 10.( - 3){\rm{]}}\\ = 2{{\rm{x}}^3} + 3{{\rm{x}}^2} - 10{{\rm{x}}^2} - 15{\rm{x}} + 8{\rm{x}} + 12 - 2{{\rm{x}}^3} + 6{\rm{x}}{}^2 + {x^2} - 3{\rm{x}} + 10{\rm{x}} - 30\\ = \left( {2{{\rm{x}}^3} - 2{{\rm{x}}^3}} \right) + \left( {3{{\rm{x}}^2} - 10{{\rm{x}}^2} + 6{{\rm{x}}^2} + {x^2}} \right) + ( - 15{\rm{x}} + 8{\rm{x}} - 3{\rm{x}} + 10{\rm{x}}) +(12-30)\\ = - 18\end{array}\)
Vậy biểu thức đã cho bằng -18 nên không phụ thuộc vào biến x
\(8{{\rm{x}}^3} - 36{{\rm{x}}^2}y + 54{\rm{x}}{y^2} - 27{y^3} = {\left( {2{\rm{x}}} \right)^3} - 3.\left( {2{\rm{x}}} \right).3y + 3.2{\rm{x}}.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {2{\rm{x}} - 3y} \right)^3}\)