\(x=9\Rightarrow x+1=10\)

Thay x+1=10 vào bt C ta được :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

Cái gì đây ??

5 tháng 9 2019

Nguyễn Văn Đạt

gửi cho bạn thôi hihi

\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+13\right)}=\dfrac{12}{13}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+13}=\dfrac{12}{13}\)

\(\Leftrightarrow12\left(x+1\right)\left(x+13\right)=13\left(x+13\right)-13\left(x+1\right)=156\)

\(\Leftrightarrow\left(x+1\right)\left(x+13\right)=13\)

\(\Leftrightarrow x^2+14x=0\)

=>x=0 hoặc x=-14

20 tháng 6 2017

a,

\(\dfrac{18\left(x-y\right)^{10}}{2\left(x-y\right)^5}=9\left(x-y\right)^5\)

b, \(\dfrac{10\left(x-2\right)^{12}}{\left(2-x\right)^{10}}=\dfrac{10\left(x-2\right)^{12}}{\left(x-2\right)^{10}}=10\left(x-2\right)^2\)

c, \(\dfrac{-18\left(x-3\right)^5}{2\left(3-x\right)^3}=\dfrac{-18\left(x-3\right)^5}{-2\left(x-3\right)^3}=9\left(x-3\right)^2\)

d,\(\dfrac{x^2-6x+9}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\)

e, \(\dfrac{x^2-x-2}{x+1}=\dfrac{x^2-2x+x-2}{x+1}=\dfrac{\left(x-2\right)\left(x+1\right)}{x+1}=x-2\)

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

Đặt \(A=x^{20}+x^{10}+1\)

\(x^{50}+x^{10}+1\)

\(=x^{50}-x^{20}+A\)

\(=x^{20}\left(x^{30}-1\right)+A\)

\(=x^{20}\left(x^{10}-1\right)A+A\)

\(=\left(x^{30}-x^{20}+1\right)A\)

\(\left(x^{30}-x^{20}+1\right)A⋮A\)

\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)