Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(\begin{array}{l}\sin \alpha = MH \Rightarrow {\sin ^2}\alpha = M{H^2}\\\cos \alpha = OH \Rightarrow {\cos ^2}\alpha = O{H^2}\end{array}\)
Áp dụng định lý Py – Ta – Go vào tam giác OMH vuông tại H ta có:
\(\begin{array}{l}M{H^2} + O{H^2} = O{M^2} = 1\\ \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = 1\end{array}\)
b) Chia cả hai vế cho \({\cos ^2}\alpha \), ta được:
\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\end{array}\)
c) Chia cả hai vế cho \({\sin ^2}\alpha \), ta được:
\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\\ \Leftrightarrow {\cot ^2}\alpha + 1 = \frac{1}{{{{\sin }^2}\alpha }}\end{array}\)
Đề bài thiếu bạn.
Đáy ABC chỉ biết 1 cạnh thì không thể xác định được các góc kia
Cần biết thêm 1 cạnh đáy nữa (ví dụ tam giác ABC vuông cân, hoặc cần thêm độ dài AB hay AC)
vì muốn áp dụng coogn thức \(sina.cosb+sinb.cosa=sin\left(a+b\right)\)
ở đây khi chia cho \(\sqrt{a^2+b^2}\Rightarrow PT\Leftrightarrow\frac{a}{\sqrt{a^2+b^2}}sinx+\frac{b}{\sqrt{a^2+b^2}}cosx=\frac{c}{\sqrt{a^2+b^2}}\)
khi tiến hành đặt : \(\frac{a}{\sqrt{a^2+b^2}}=cosy\Rightarrow siny=\sqrt{1-cos^2y}=\frac{b}{\sqrt{a^2+b^2}}\)
khi đó \(PT\Leftrightarrow sinx.cosy+siny.cosx=\frac{c}{\sqrt{a^2+b^2}}\Leftrightarrow sin\left(x+y\right)=\frac{c}{\sqrt{a^2+b^2}}\)
tới đây là giải được pt lượng giác cơ bản rồi nhé
chịu vì không biết