Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC\) \(\subset\)\(\left(SBC\right)\)
Tìm giao tuyến của của \(\left(OMN\right)\)và \(\left(SBC\right)\):
\(N\)là điểm chung thứ nhất
Ta có : \(MO\)\(\subset\)\(\left(AMO\right)\)\(\equiv\)\(\left(SAH\right)\)với \(H=AO\)\(\cap\) \(BC\)
\(\left(SAH\right)\)\(\cap\) \(\left(SBC\right)\)= \(SH\)
Trong \(\left(SAH\right)\): \(MO\)\(\cap\) \(SH\)= \(K\)
\(K\)là điểm chung thứ 2.
Vậy \(\left(OMN\right)\)\(\cap\)\(\left(SBC\right)\)= \(NK\)
Trong \(\left(SBC\right):\)\(NK\)\(\cap\)\(BC\)= \(P\)
Vậy \(\left(OMN\right)\)\(\cap\) \(BC\)= \(P\)
Ta có N thuộc (OMN)
C thuộc đường thẳng BC
Mà N trùng với C => N là giao điểm của (OMN) và BC
Trong mặt phẳng (SBC), nối HM kéo dài cắt BC tại K \(\Rightarrow AK\in\left(ABC\right)\)
Từ câu a có \(AM\perp\left(SBC\right)\) \(\Rightarrow AM\perp SC\)
Mà \(SC\perp AH\Rightarrow SC\perp\left(AHM\right)\Rightarrow SC\perp AK\) (1)
\(SA\perp\left(ABC\right)\Rightarrow SA\perp AK\) (2)
(1);(2) \(\Rightarrow AK\perp\left(SAC\right)\Rightarrow AK\perp AC\)
2:
a: \(B\in SB\)
\(B\in\left(ABC\right)\)
Do đó: \(B=SB\cap\left(ABC\right)\)
b: Chọn mp(SAB) có chứa BH
\(SA\subset\left(SAB\right)\)
\(SA\subset\left(SAC\right)\)
Do đó: \(\left(SAB\right)\cap\left(SAC\right)=SA\)
Gọi E là giao của BH và SA
=>E là giao điểm cần tìm
c: Chọn mp(SBC) có chứa BK
\(SC\subset\left(SBC\right)\)
\(SC\subset\left(SAC\right)\)
Do đó: \(\left(SBC\right)\cap\left(SAC\right)=SC\)
Gọi F là giao của BK với SC
=>F là giao điểm cần tìm
d: Trong mp(SAC), gọi O là giao của HK với AC
mà \(AC\subset\left(ABC\right)\)
nên \(O=HK\cap\left(ABC\right)\)
1:
a: \(S\in SA\)
\(S\in SB\subset\left(SBC\right)\)
Do đó: \(S=SA\cap\left(SBC\right)\)
b: Chọn mp(SAB) có chứa SM
\(AB\subset\left(ABC\right)\)
\(AB\subset\left(SAB\right)\)
Do đó: \(AB=\left(SAB\right)\cap\left(ABC\right)\)
\(M\in AB\)
=>SM giao AB=M
=>\(M=SM\cap\left(ABC\right)\)
c: Chọn mp(BAC) có chứa MN
\(BC\subset\left(BAC\right)\)
\(BC\subset\left(SBC\right)\)
Do đó: (BAC) giao (SBC)=BC
mà \(BC\cap MN=N\)
nên \(N=MN\cap\left(SBC\right)\)
d: Chọn mp(ABC) có chứa MN
\(AC\subset\left(SAC\right)\)
\(AC\subset\left(ABC\right)\)
Do đó: \(AC=\left(SAC\right)\cap\left(ABC\right)\)
Gọi giao của MN và AC là E
=>\(E=MN\cap\left(SAC\right)\)
a: (SB;(ABC))=(SB;BA)=góc SBA
\(\tan SBA=\dfrac{SA}{AB}=\sqrt{6}\)
=>góc SBA=68 độ
b: (SA;(SBC))=(SA;SB)=góc ASB
tan ASB=AB/SA=1/căn 6
=>góc ASB=22 độ
b) AH ⊥ SB mà SB là giao tuyến của hai mặt phẳng vuông góc là (SBC) và (SAB) nên AH ⊥ (SBC).
c) Xét tam giác vuông SAB với đường cao AH ta có:
d) Vì OK ⊥ (SBC) mà AH ⊥ (SBC) nên OK // AH, ta có K thuộc CH.
OK = AH/2 = (a√6)/6.