Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có :
BC2 + AC2 = 82 + 62 = 100 = 102 = AB2
=> tam giác ABC vuông tại C
=> góc C là 90o , góc A và góc B là 45o
Giỏi thật: Nếu A = B = 45 độ thì CA = CB rồi (mà CA=6cm khác AB=8cm)
a,xét tam giác AMB và ANC có:MB=CN(gt)
tam giác AMN cân tại A(gt)=>AM=AN(đn)và góc AMN=góc ANM(tc)
=>tam giác AMB =tam giác ANC(c-g-c)
=>tam giác ABC cân tại A
b,tam giác AMB=tam giác ANC(cm trên)
góc ABM=góc ACN
góc ABM+góc MBH=180°
góc ACN +góc NCK=180°
=>góc MBH=góc NCK
xét tam giác MBH và NCK có MB=CN(gt)
góc MHB= góc CKN (MH vuông góc AB.NK vuông góc AC)(gt)
=>tam giác MBH=tam giác NCK (cạnh huyền-góc nhọn)
c, tam giác MBH= tam giác NCK (cm câu b)
=>góc BMH= góc CNK
=> tam giác MNO cân tại O
#Thiên#
Lời giải:
a. $AB=AC=14$ cm nên $ABC$ là tam giác cân tại $A$
Do đó đường phân giác $AD$ đồng thời là đường trung tuyến
$\Rightarrow BD=DC=\frac{BC}{2}=6$ (cm)
b.
$\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=1$
chứng minh tam giác ADB đồng dạng với tam giác ABC theo trường hợp canh góc cạnh
nen góc ADB=70 =>góc bdc=110
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>BD=60/7cm
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
góc BAC=90 độ