Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường trung trực của một đoạn thẳng là đường vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó.
a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :
AB2 + AC2 = BC2
\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82
\(\Rightarrow\)AC = 8 cm
theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )
b) Xét tam giác DAC và tam giác BAC có :
AB = AD ( gt )
\(\widehat{DAC}=\widehat{BAC}=90^o\)
AC ( cạnh chung )
\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )
\(\Rightarrow\)DC = BC
\(\Rightarrow\)tam giác DCB cân tại C
c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC
\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm
d) Nối A với Q.
Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)
Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)
\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA
Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M
Suy ra : 3 điểm B,M,Q thẳng hàng
áp dụng định lí py-ta-go ta có
AB^2+AC^2=BC
=6^2+AC^2=10^2
12+AC^2=20
SUY RA AC=20-12=8
CĂN BẬC 2 CỦA 8 LÀ 4
SUY RA AC=4
GÓC B <C<A
Ta có hình vẽ:
a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (GT)
\(\widehat{AIB}\)=\(\widehat{AIC}\) (AI là đường trung trực của BC)
AI : cạnh chung
Vậy tam giác AIB = tam giác AIC (c.g.c)
b/ Ta có: tam giác AIB = tam giác AIC (câu a)
=> \(\widehat{BAI}\)=\(\widehat{CAI}\) (2 góc tương ứng)
=> AI là phân giác \(\widehat{BAC}\) (đpcm)
c/
*Cách 1:
Xét tam giác AHI và tam giác AKI có:
\(\widehat{AHI}\)=\(\widehat{AKI}\) = 900
AI: cạnh chung
\(\widehat{HAI}\)=\(\widehat{KAI}\) (đã chứng minh)
Vậy tam giác AHI = tam giác AKI
(theo trường hợp cạnh huyền góc nhọn)
=> IH = IK (2 cạnh tương ứng)
*Cách 2:
Xét tam giác BHI và tam giác CKI có:
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác AIB = tam giác AIC)
BI = IC (GT)
\(\widehat{BHI}\)=\(\widehat{CKI}\)=900
Vậy tam giác BHI = tam giác CKI
(theo trường hợp cạnh huyền góc nhọn)
=> IH = IK (2 cạnh tương ứng)
Ở đây mình làm 2 cách nhưng khi vào làm bài bạn viết 1 cách thôi nhé, bạn chọn cách nào dễ hiểu mà làm...^^
5)gọi Cx là tia đối tia CA
Ta có ˆCAH=ˆCBACAH^=CBA^
và ˆACH=ˆBCAACH^=BCA^
=>△CAH∼△CBA△CAH∼△CBA (g, g)
=>CHCA=AHBACHCA=AHBA (1)
có AE là phân giác BAH
=>AHAB=EHEBAHAB=EHEB (2)
Áp dụng Menelauyt cho 3 điểm E, M, F và tam giác HAB ta có
EHEB.MBMA.FAFH=1EHEB.MBMA.FAFH=1
<=>EHEB=FHFAEHEB=FHFA (3)
từ (1, 2, 3) =>CHCA=FHFACHCA=FHFA (4)
mà F thẳng hàng với H, A và nằm ngoài đoạn thẳng HA (5)
từ (4, 5) =>CF là phân giác ngoài góc ACB
=>ˆBCF=12.ˆBCx=12.(ˆBAC+ˆABC)BCF^=12.BCx^=12.(BAC^+ABC^) (6)
mặt khác ˆAEC=ˆABC+ˆEABAEC^=ABC^+EAB^
=ˆABC+12.ˆBAH=ABC^+12.BAH^
=ˆABC+12.(ˆBAC−ˆABC)=ABC^+12.(BAC^−ABC^)
=12.(ˆBAC+ˆABC)=12.(BAC^+ABC^) (7)
từ (6, 7) =>ˆBCF=ˆAECBCF^=AEC^
=>CF //AE (đpcm)
XÁC ĐỊNH ĐỘ DÀI TỪNG ĐOẠN THẲNG RỒI CHIA 2 . GỌI ĐIỂM CHIA MỖI ĐOẠN THẲNG THÀNH 2 PHẦN BẰNG NHAU.
VẼ ĐƯỜNG TRUG TRỰC ĐI QUA ĐIỂM ĐÓ.
MIK HƯỚNG DẪN GIẢI NHÉ