Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: BK=BA+AK
BC=BE+EC
mà BA=BE và AK=EC
nên BK=BC
=>góc BKC=góc BCK
tam giác ABN cân tại B nên đường cao cũng chính là đường trung tuyến nên AH =HN
Ta có : hai tam giác ABH và NBH có BH là cạnh chung ,NB=BA ,AH=HN nên hai tam giác bằng nhau theo trường hợp cạnh cạnh cạnh
a: Xét ΔBAK có BA=BK
nên ΔBAK cân tại B
b: góc BAH+góc B=90 độ
góc ACB+góc B=90 độ
=>góc BAH=góc ACB
góc HAK+góc BKA=90 độ
góc KAI+góc BAK=90 độ
mà góc BKA=góc BAK
nên góc HAK=góc KAI
d: (AH+BC)^2=AH^2+2*AH*BC+BC^2
=AH^2+2*AB*AC+AB^2+AC^2
=AH^2+(AB+AC)^2>(AB+AC)^2
=>AH+BC>AB+AC
c: AH+BC>AB+AC
=>BC-AB>AC-AH
AH=1/2 AC
AH=1/2 . 40 => AH = 20
Tam giác ABH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + BH2 = AB2
Thay số ta đc ;202 + BH2 = 292
=> BH2 = 202 - 292 ( tự tính nha )
Tam giác ACH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + CH2 = AC2 (thay số rr tự tính )
B chu vi khi tính đc BH và CH r thì tính đc BC .sau đó tính chu vi tam giác là các cạnh cộng lại vs nhau là đc
xét tam giác ABD và tam giác EBD có:
BD(chung)
góc ABD=góc EBD
suy ra tam giác ABD=tam giácEBD(CH-GN)
suy ra AB=EB suy ra tam giác AEB cân và góc B=60 độ suy ra tam giác ABE đều
cảm ơn bạn nhưng thật ra câu mik muốn hỏi là câu b, bạn làm ơn giúp mik nhé
Xét ΔADB và ΔAEC có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE và góc BAD=góc CAE
góc AEB>góc C
=>góc AEB>góc ABE
=>AB>AE
Lấy M sao cho D là trung điểm của AM
Xét tứ giác ABME có
D là trung điểm chung của AM và BE
=>ABME là hbh
=>AB=ME>AE và góc BAD=góc AME
=>góc DAE>góc DME
=>góc DAE>góc BAD
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)
b) Xét ΔABC có
AB là cạnh đối diện của \(\widehat{B}\)
AC là cạnh đối diện của \(\widehat{C}\)
\(\widehat{B}=\widehat{C}\)(gt)
Do đó: AB=AC(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
a) Vì AB = AC => \(\Delta ABC\) cân tại A => \(\widehat{ABC}\) = \(\widehat{ACB}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(\widehat{ABC}\) = \(\widehat{ACB}\)
AB = AC
MB = MC
=> \(\Delta ABM\) = \(\Delta ACM\) (c.g.c)
=> \(\widehat{BAM}\) = \(\widehat{CAM}\) (2 góc tương ứng)
b) Vì \(\widehat{B}\) = \(\widehat{C}\) => \(\Delta ABC\) cân tại A
=> AB = AC
Xét △ABC, có \(\widehat{A}=90^0\)
Áp dụng định lý pitago trong tam giác vuông ABC, CÓ
\(BC^2=AB^2+AC^2=2^2+2^2=4+4=8\)
\(\Rightarrow BC=\sqrt{8}=2\sqrt{2}cm\)
Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
hay \(BC^2=2^2+2^2=8\)
⇔\(BC=\sqrt{8}=2\sqrt{2}cm\)
Vậy: \(BC=2\sqrt{2}cm\)