vẽ tam giác ABC biết AB= 3cm, AC=4cm, BC=5cm. Vẽ a, b, c lần lượt là đường trung trực của AB, AC, BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có DE // AB, DF // AC, EF // BC. Vì EF // BC và DE // AB, theo định lí Thales, ta có:AB/BC = DE/EF. (1)Vì EF // BC và DF // AC, theo định lí Thales, ta có:AC/BC = DF/EF. (2)Từ (1) và (2), ta có:AB/BC = DE/EF = AC/BCRút gọn phương trình, ta được:AB = AC = BCVậy tam giác ABC = tam giác CEA.b) Vì AB = AC và DE // AB, theo định lí Thales, ta có:AB/DE = AC/CEVì vậy, AB = AC phải bao hàm DE = CE.c) Vì AB = BC và DE // AB, theo định lí Thales, ta có:AB/DE = BC/AEVì vậy, AB = BC phải suy ra DE = AE.d) Để chứng minh trung điểm 2 đoạn AC và BE trùng nhau, ta cần chứng minh rằng AE = EC và BD = DC.Vì DE // AB và DE = AE, theo định lí Thales, ta có:AB/DE = BC/ECVì thế,
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xet ΔCDB có
CA,DI là trung tuyến
CA căt DI tại N
=>N là trọng tâm
=>CN=2/3*CA=8/3cm
c: Gọi G là trung điểm của CA
=>PG là trung trực của CA
=>PC=PA và PG//DA
=>ΔPCA cân tại P
Xét ΔCAD có
G la trung điểm của CA
GP//DA
=>P là trung điểm của CD
=>B,N,P thẳng hàng
a: AC=4cm
b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có
AM chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔAMN
Suy ra: MH=MN; AH=AN
hay AM là đường trung trực của NH
c: Xét ΔAHN có AH=AN
nên ΔAHN cân tại A
mà \(\widehat{HAN}=60^0\)
nên ΔAHN đều
a: BC=căn 3^2+4^2=5cm
b,d: Đề bài yêu cầu gì?
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC