Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác CME có :
BM=ME (gt)
Góc AMB = góc CME ( đối đỉnh )
AM = MC ( gt )
-> vậy tam giác AMB = tam giác CME (c.g.c)
b)
a/(c.g.c)
b/ CE=AB ( cặp cạnh tương ứng)
Mà: AB<BC( cạnh huyền lớn nhất)
Nên CE<BC
c/góc ABM=góc CEM(cặp góc tương ứng) (1)
Xét tam giác BCE có: CE<BC( CMT)
Suy ra góc CEM<góc MBC (2) ( Quan hệ giữa góc và cạnh đối diện trong 1 tam giác)
Vậy: từ (1) và (2), ta có: góc ABM< góc MBC
d/góc ABM=góc CEM, lại ở vị trí SLT nên AE//BC
a: Xét ΔMAB và ΔMCE có
MA=MC
\(\widehat{AMB}=\widehat{CME}\)
MB=ME
Do đó: ΔMAB=ΔMCE
=>\(\widehat{MAB}=\widehat{MCE}\)
mà \(\widehat{MAB}=90^0\)
nên \(\widehat{MCE}=90^0\)
=>EC\(\perp\)AC
Ta có: ΔMAB=ΔMCE
=>AB=CE
mà BC>AB(ΔABC vuông tại A)
nên BC>CE
b: Xét ΔCBE có CB>CE
mà \(\widehat{CEB};\widehat{CBE}\) lần lượt là góc đối diện của hai cạnh CB,CE
nên \(\widehat{CEB}>\widehat{CBE}\)
mà \(\widehat{CEB}=\widehat{ABM}\)(ΔMAB=ΔMCE)
nên \(\widehat{CBM}>\widehat{ABM}\)
Tự vẽ hình nhé
a) Xét \(\Delta\)AMB và \(\Delta\)CME có : MA = MC ( M: trung điểm) ; MB =ME (g t) ; góc AMB =góc CME ( đối đỉnh)
=> \(\Delta\)AMB và \(\Delta\)CME ( c-g-c)
b) => góc MEC = góc MAB = 90 ( góc tương úng)
=> EC vuông góc AC
mà AB cuông góc AC
=> EC //AB
c) Vì \(\Delta\)AMB và \(\Delta\)CME => AB = CE ( cạnh tương úng)
mà AK =AB => AK = CE.