K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

ta có góc A1+D1=(<A+<D)/2 (vì AI,DI là p/giác)

mà <A+<D=1800 (t/c/phía, AB//CD)

=><A1+<D1=1800/2=900

=><AID=900

Kí hiệu < là kí hiệu góc

Còn song song là //

17 tháng 9 2016

sao bạn ko kí hiệu góc ở ô fx rồi bấmcái ô vuông tiến vd \(\widehat{ABC}\) 

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )

16 tháng 7 2016

các bạn giải nhanh nhé mình đang rất gấp

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )