Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm
a) Xét 2 tam giác vuông \(\Delta EBC\)và \(\Delta DCB\)có:
\(BC:\)cạnh chung
\(\widehat{EBC}=\widehat{DCB}\)
suy ra: \(\Delta EBC=\Delta DCB\) (ch_gn)
\(\Rightarrow\)\(BD=EC\) (cạnh tương ứng)
b) \(\Delta ABC\)có các đường cao \(BD,EC\)cắt nhau tại \(H\)
\(\Rightarrow\)\(H\)là trực tâm của \(\Delta ABC\)
\(\Rightarrow\)\(AH\)là đường cao của \(\Delta ABC\)
\(\Rightarrow\)\(AH\perp BC\)
c) \(\Delta ABC\)cân tại A có AH là đường cao
nên AH đồng thời là đường phân giác
\(\Rightarrow\)\(\widehat{EAH}=\widehat{DAH}\) (đpcm)
a) Xét hai tam giác vuông ABD và ACE có:
AB = AC (GT)
ˆBAC:chungBAC^:chung
=> ABD = ACE (c.h - g.n)
b) Ta có: ΔABC cân tại A có AH là đường cao
=> AH là đường trung tuyến của BC
=> H là trung điểm của BC
=> BH = CH = BC : 2 (1)
ΔDBC vuông tại D có DH là đường trung tuyến của BC
=> DH là đường trung tuyến ứng vs cạnh huyền
=> DH = BC : 2 (2)
Từ (1) và (2) => CH = DH
=> Tam giác HDC cân tại H
c/ Xét 2 tam giác vuông ΔHDM và ΔHCM ta có:
Cạnh huyền DH = CH (cmt)
HM: chung
=> ΔHDM = ΔHCM (c.h - c.g.v)
=> DM = CM (2 cạnh tương ứng)
d/ Đang suy nghĩ ạ :((