Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Xét hai tam giác vuông ABD và tam giác vuông MBD có
góc BAD = góc BMD = 90độ
cạnh BD chung
góc ABD = góc MBD
Do đó ; tam giác ABD= tam giác MBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = MB
b.Xét tam giác ABC ,có góc A = 90độ , góc C=30 độ
\(\Rightarrow\)góc B = 60 độ ,mà BD là tia phân giác của góc ABC
\(\Rightarrow\)\(\widehat{ABD}=\widehat{DBC}=30^O\)mà \(\widehat{C}=30^o\)\(\Rightarrow\widehat{DBC}=\widehat{DCB}=30^O\)
\(\Rightarrow\Delta BCD\)cân tại D
Ta có \(\Delta BDC\)cân tại D,\(DM\perp BC\)
\(\Rightarrow\)DM là đường trung tuyến của tam giác BDC
\(\Rightarrow\)BM=MC\(\Rightarrow\)M là trung điểm của BC
c,Xét tam giác ADE và tam giác MDC có
\(\widehat{ADE}=\widehat{MDC}\)\((\)đối đỉnh\()\)
\(\widehat{DAE}=\widehat{DMC}=90^O\)
AD=DM\((\)Từ tam giác BAD =tam giác BMD\()\)
Do đó \(\Delta ADE=\Delta MDC\)\((g.c.g)\)
\(\Rightarrow AE=MC\)\(\Rightarrow AE=BA=BM=MC\)
\(\Rightarrow BE=BC\)
\(Xét\Delta BEF\)và \(\Delta BCFcó\)
góc EBF = góc CBF
BF cạnh chung
BE=BC
Do đó tam giác BEF =tam giác BCF [c.g.c]
\(\Rightarrow\widehat{BFE}=\widehat{BFC}=90^O\)
\(\Rightarrow\widehat{EFC}=180^O\)\(\Rightarrow\)Ba điểm C,F,E thẳng hàng
Chúc bạn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBMN có
NA là trung tuýen
NI=2/3NA
=>I là trọng tâm
=>MI đi qua trung điểm của BN
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
![](https://rs.olm.vn/images/avt/0.png?1311)
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: \(\widehat{DBC}=\dfrac{60^0}{2}=30^0\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)
nên ΔDBC cân tại D