|x|

b) y= |2x+1|

c)y=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

a)

\(y=|x|=\left\{\begin{matrix} \text{x nếu x}\geq 0\\ \text{-x nếu x}< 0\end{matrix}\right.\)

Như vậy, từ phía bên phải của trục tung (tức là vùng mà $x\geq 0$, ta vẽ đồ thị $y=x$, từ phía bên trái của trục tung (tức vùng mà $x< 0$, ta vẽ đồ thị $y=-x$

Hàm số bậc nhất

b) Xét TH tương tự với $y=|2x+1|$

Hàm số bậc nhất

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

c)

Xét các TH sau:

\(x\geq 3\) thì \(y=x-1+x-3=2x-4\)

\(x<1\) thì \(y=1-x+3-x=4-2x\)

\(1\leq x< 3\): \(y=x-1+3-x=2\)

Bây giờ ta chia khoảng để vẽ đồ thị thôi

Khoảng từ \(x\geq 3\) đổ đi vẽ đths \(y=2x-4\)

Khoảng từ \(1\leq x<3\) vẽ đường thẳng $y=2$

Khoảng $x< 1$ đổ về sau: vẽ đths $y=4-2x$

Hàm số bậc nhất

1, Biểu thức: \(\sqrt{\left(1+x^2\right)^2}\) bằng: A. 1 + x\(^2\) B. - ( 1 + x\(^2\) ) C. \(\pm\) ( 1 + x\(^2\) ) D. Kết quả khác 2, Biểu thức \(\sqrt{\frac{1-2x}{x^2}}\) xác định khi: A, \(x\ge\frac{1}{2}\) B, \(x\le\frac{1}{2}vàx\ne0\) C, \(x\le\frac{1}{2}\) D, \(x\ge\frac{1}{2}vàx\ne0\) 3, Trong các hàm số sau, hàm số nào đồng biến: A, \(y=x-2\) B, \(y=\frac{1}{2}x+1\) C, \(y=\sqrt{3}-\sqrt{2}\left(1-x\right)\) D,...
Đọc tiếp

1, Biểu thức: \(\sqrt{\left(1+x^2\right)^2}\) bằng:

A. 1 + x\(^2\)

B. - ( 1 + x\(^2\) )

C. \(\pm\) ( 1 + x\(^2\) )

D. Kết quả khác

2, Biểu thức \(\sqrt{\frac{1-2x}{x^2}}\) xác định khi:

A, \(x\ge\frac{1}{2}\)

B, \(x\le\frac{1}{2}vàx\ne0\)

C, \(x\le\frac{1}{2}\)

D, \(x\ge\frac{1}{2}vàx\ne0\)

3, Trong các hàm số sau, hàm số nào đồng biến:

A, \(y=x-2\)

B, \(y=\frac{1}{2}x+1\)

C, \(y=\sqrt{3}-\sqrt{2}\left(1-x\right)\)

D, \(y=6-3\left(x-1\right)\)

4, Cho hàm số \(y=-\frac{1}{2}x+4\) , kết luận nào sau đây đúng

A, Hàm số luôn đồng biến \(\forall\) x \(\ne\) 0

B, Đồ thị hàm số luôn đi qua gốc tọa độ

C, Đồ thị cắt trục hoành tại điểm 8

D, Đồ thi cắt trục tung tại điểm -4

5, Điểm thuộc đồ thị hàm số y=2x-5 là

A, (-2,-1) B, (3,2)

C, (4,3) D, (1,-3)

6, Đường thẳng song song với đường thẳng y=-\(\sqrt{2}\) x là

A, y=-\(\sqrt{2}\)x+1 B, y=-\(\sqrt{2}\) x -1

C, y=-\(\sqrt{2}\) x D, y=\(\sqrt{2}\) x

7, Cho 2 đường thẳng y=\(\frac{1}{2}\)x+5 và y=\(-\frac{1}{2}\)x+5. Hai đường thẳng đó:

A, Cắt nhau tại điểm có hoành độ bằng 5

B, Song song với nhau

C, Vuông góc với nhau

D, Cắt nhau tại điểm có tung độ bằng 5

8, Cho PT x-y=1 ( 1 ). Phương trình nào dưới đây có thể kết hợp vs ( 1 ) để được 1 HPT có vô số nghiệm:

A, 2y=2x-2 B, y=1+x

C, 2y=2-2x D, y=2x-2

( Câu 8 này có thể chỉ cho mình cách giải luôn không)

9, HPT nào dưới đây có thể kết hợp vs PT x+y=1 để được HPT có nghiệm duy nhất

A, 3y=-3x+3 B, 0x+y=1

C, 2y=2-2x D, y=2x-2

10, Cho tam giác MNP vuông tại M có MH là đường cao, cạnh MN \(\frac{\sqrt{3}}{2}\), \(\widehat{P}=60^0\) . Kết luận nào sau đây đúng.

A, Độ dài MP=\(\frac{\sqrt{3}}{2}\) B, Độ dài MP=\(\frac{\sqrt{4}}{3}\)

C, \(\widehat{MNP}=60^0\) D, \(\widehat{MNH}=30^0\)

Các bạn giải giúp mình nhanh với nhé, mình đang rất gấp. Cảm ơn mấy bạn trước

0
18 tháng 11 2018

A, Đồ thì hàm số y=2/3x+2 là một đường thẳng đi qua hai điểm A(0;2),B(-3;0)

Đồ thị hàm số y=-3/2x+2 là một đường thẳng đi qua hai điểm A(0;2),C(2;0)Hàm số bậc nhất

21 tháng 11 2022

Bài 2:

Thay x=2 vào y=2x-1, ta được:

y=2*2-1=3

Thay x=2 và y=3 vào y=ax-4, ta được:

2a-4=3

=>2a=7

=>a=7/2

NV
12 tháng 11 2019

a/ \(y=-2x-5\)

\(\Rightarrow\left\{{}\begin{matrix}2m=-2\\m-1=-5\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

b/ \(y=x-2\)

\(\Rightarrow2m.1=-1\Rightarrow m=-\frac{1}{2}\)

Bài 2:

Hệ phương trình tọa độ giao điểm M:

\(\left\{{}\begin{matrix}y=3x-2\\2y-x=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

Bài 3:

Hệ pt tọa độ giao điểm A của d1 và d2:

\(\left\{{}\begin{matrix}y=2x-3\\y=x-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow d_3\) qua A

\(\Rightarrow\left(m-1\right).2+2=1\Rightarrow m=\frac{1}{2}\)