Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài đó không cần dùng bảng xét dấu cũng được mà bạn
M=\(\left(x+3\right)\left(x+4\right)\)
\(\text{M dương }\Leftrightarrow\text{M}\ge0\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)
\(\text{TH1}:\)
\(\hept{\begin{cases}x+3\ge0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x>-4\end{cases}}}\Rightarrow x\ge3\)
\(\text{TH2}:\)
\(\hept{\begin{cases}x+3\le0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x< -4\end{cases}}}\Rightarrow x\le3\)
\(\text{Vậy với }x\ge3\text{ hoặc }x\le3\text{ thì M dương }\)
Bài này không cần dùng bảng xét dấu đâu bạn. Bạn lập luận như sau:
M dương khi: (x+3) và (x+4) cùng dấu
TH1: (x+3) > 0 => x > -3
(x+4) > 0 => x > -4
=> x > -3
TH2: (x+3) < 0 => x < -3
(x+4) < 0 => x < -4
=> x < -4
Vậy x > -3 hoặc x < -4
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+3>0\:\Leftrightarrow\:x>-3\\x+4>0\:\Leftrightarrow\:x>-4\end{cases}}\\\hept{\begin{cases}x+3< 0\:\Leftrightarrow\:x< -3\\x+4< 0\:\Leftrightarrow\:x< -4\end{cases}}\end{cases}}\Rightarrow\:\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Leftrightarrow6x-3y=2x+4y\)
\(\Leftrightarrow6x-2x=4y+3y\)
\(\Leftrightarrow4x=7y\)
\(\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Vậy tỉ số giữa x và y là \(\frac{x}{7}=\frac{y}{4}\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Rightarrow6x-3y=2x+4y\)
\(\Rightarrow6x-2x=3y+4y\)
\(\Rightarrow4x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{4}{7}\)
Vậy tỉ số giữa x và y là \(\frac{4}{7}\)
_Chúc bạn học tốt_
Ta có:
2x + 3y + 4xy = 9
<=> 2x ( 1 + 2y ) + \(\frac{3}{2}\). ( 1 + 2y ) - \(\frac{3}{2}\)= 9
<=> \(4x\left(1+2y\right)+3\left(1+2y\right)-3=18\)
<=> \(\left(1+2y\right)\left(4x+3\right)=21\)= 1.21 = -1.(-21) = 3.7 = (-3). (-7 )
Em xét trường hợp hoặc lập bảng nhé!
Ta có:
2x^3+3x=0
=>x(2x^2+3)
=>x=0 hoặc 2x^2+3=0
Xét 2x^2+3=0 có:
2x^2+3 = 0
<=>2x^2=-3
<=>x^2=-3/2
<=>x=\(\sqrt{-\frac{3}{2}}\)
Ta có :
|x - 1/2| > 0
Vậy GTNN của |x - 1/2| = 0 <=> x - 1/2 = 0 <=> x = 1/2
x2-5x+4 có nghiệm<=>x2-5x+4=0
<=>x2-4x-x+4=0
<=>x(x-4)-(x-4)=0
<=>(x-4)(x-1)=0
<=>x-4=0 hoặc x-1=0
<=>x=4 hoặc x=1
KL:..........