Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ các công thức (13.5), (13.6) và (13.7), ta có:
\(U_{AB}=V_A-V_B=\dfrac{A_{A\infty}}{q}-\dfrac{A_{B\infty}}{q}=\dfrac{A_{A\infty}-A_{B\infty}}{q}\)
Mà: \(A_{A\infty}=A_{AB}+A_{B\infty}\)
\(\Rightarrow U_{AB}=\dfrac{A_{AB}+A_{B\infty}-B_{B\infty}}{q}=\dfrac{A_{AB}}{q}\)
Q R q
Để chứng minh công thức trên thì ta tính theo định nghĩa: \(V=\dfrac{W_t}{q}\) (điện thế tại 1 điểm bằng thế năng tĩnh điện gây ra tại điện tích đặt ở điểm đó chia cho độ lớn điện tích).
Xét quả cầu có điện tích q đặt cách quả cầu Q một khoảng R.
Thế năng tĩnh điện do Q gây ra tại q là: \(W_t=\dfrac{kQq}{\varepsilon R}\)
Điện thế do Q gây ra tại vị trí q là: \(V=\dfrac{W_t}{q}=\dfrac{kQ}{\varepsilon R}\)
Hiệu điện thế UMN bằng độ biến thiên thế năng từ M đến N: UMN = VM - VN
\({V_{MN}} = \frac{{{A_{MN}}}}{q}\) ⇒ ANM = (VM−VN)q = UMN.q
Độ biến thiên động năng bằng công của lực điện trường:
\({W_d} - {W_{d0}} = A \Rightarrow \frac{1}{2}m{v^2} - 0 = {q_e}Ed \Rightarrow v = \sqrt {\frac{{2{q_e}Ed}}{m}} \)
a)Điện tích của q : q =Cu = 12.10-4 C.
b) Vì lượng điện tích rất nhỏ, nên điện tích và đo đó cả hiệu điện thế giữa hai bản tụ coi như không thay đổi. Công của lực điện sinh ra sẽ là: A = ∆q.U = 72.10-6 J.
c) Điện tích của tụ giảm một nửa thì hiệu điện thế giữa hai đầu bản tụ cũng giảm một nửa.
U′=U2=30VU′=U2=30V
A' = ∆q.U' = 36.10-6 J.
Ta có: \(A=\dfrac{1}{2}QU\)
Công tổng cộng để tích điện cho tụ từ trạng thái ban đầu đến khi có điện tích Q là năng lượng được dự trữ trong tụ điện dưới dạng năng lượng điện trường.
Và Q=CU nên thay vào công thức trên ta thu được:
\(W=\dfrac{1}{2}QU=\dfrac{1}{2}CU^2=\dfrac{Q^2}{2C}\)