K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: A

Câu 2: B

Câu 3: B

Câu 4: D

11 tháng 11 2021

\(a\le0\)

14 tháng 11 2021

a<0

18 tháng 6 2023

\(\left\{{}\begin{matrix}x+y=7\\-x+2y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x-y=-7\\-x+2y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\\left[-x-\left(-x\right)\right]+\left(-y-2y\right)=-7-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\-3y=-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=7\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(4;3\right)\)

23 tháng 11 2019

Ta có:

\(\left(\sqrt{3+\sqrt{20}}\right)^2-\left(\sqrt{5+\sqrt{5}}\right)^2\)

\(=3+\sqrt{20}-5-\sqrt{5}\)

\(=-2+2\sqrt{5}-\sqrt{5}\)

\(=-2+\sqrt{5}\)

 Ta thấy: \(5>4\Rightarrow\sqrt{5}>\sqrt{4}\Rightarrow\sqrt{5}>2\)

Do đó : hiệu trên >0

Suy ra : \(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}\)

27 tháng 12 2021

Thông cảm , hình ko cho vẽ

Bước 1 : Nối AC

Có 3 trường học xảy ra :

- AC  chia tứ giác làm 2 phần diện tích bằng nhau  ( AC)

\(-Sadc>Sabc\)

\(-Sadc< Sabc\)

( Xét trường hợp này trường hợp tương tự )

Bước 2 : Vẽ đường thẳng qua  D  và song song với AC , cắt đường BC ở E .

Bước 3 : Lấy M đi qua trung điểm của BE

Bước 4 : Nối AM

AM sẽ chia tứ giác ABCD thành hai phần có diện tích bằng nhau

11 tháng 7 2016

Ta sẽ chứng minh bằng biến đổi tương đương như sau :

Ta có : \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\left(1\right)\Leftrightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\)

\(\Leftrightarrow2\sqrt{ab}>0\Leftrightarrow\sqrt{ab}>0\) (luôn đúng)

Vì bất đẳng thức cuối luôn đúng nên bất đẳng thức (1) được chứng minh.

27 tháng 12 2021

Tham Khảo:

undefined

1 tháng 1 2022

ny lê song phương là bùi diệu linh đó

17 tháng 9 2015

\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+\sqrt{5\left(5-\sqrt{3}\right)}}=\sqrt{5\sqrt{3}+\sqrt{25-5\sqrt{3}}}\)

Trần Đức Thắng lm nốt đi

 

3: góc AMN=góic ACM

=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM

=>góc AMB=90 độ

=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM

NO1 min khi NO1=d(N;BM)

=>NO1 vuông góc BM

Gọi O1 là chân đường vuông góc kẻ từ N xuống BM

=>O1 là tâm đường tròn ngoại tiếp ΔECM  có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM