Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/2 - 1/3 + 1/3 -1/4 + ......... +1/2011 -1/2012
S= 1/2 - 1/2012 = 1005/2012
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{2012}\)
\(S=\frac{1}{2}+0+0+0+...-\frac{1}{2012}\)
\(S=\frac{1}{2}-\frac{1}{2012}\)
\(S=\frac{1005}{2012}\)
\(A=\frac{2012}{1}\cdot\frac{1005}{2012}\)
\(A=1005\)
\(a)\) \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(A=1-\frac{1}{2^9}\)
\(A=\frac{2^9-1}{2^9}\)
Vậy \(A=\frac{2^9-1}{2^9}\)
Chúc bạn học tốt ~
\(s=\frac{105}{105+ab+a}+\frac{ab}{a.\left(bc+b+1\right)}+\frac{a}{ab+a+105}=\frac{105}{105+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+105}\)
\(s=\frac{105}{105+ab+a}+\frac{ab}{105+ab+a}+\frac{a}{ab+a+105}=\frac{105+ab+a}{105+ab+a}=1\)
Thay 105 = abc vào biểu thức S ta được:
\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)
Vậy S=1
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Vì \(abc=105\)
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(b+1+bc\right)}\)
\(S=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(S=\frac{bc+b+1}{bc+b+1}=1\)
Vậy \(S=1\)