Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(M=\left[\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\right].2.3...98\)
\(=\left[\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}\right].2.3...98=99\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).2.3...98\)
\(=99\left(\frac{k_1+k_2+...+k_{49}}{1.2.3...98}\right).2.3...98\left(k_1,k_2...k_{49}\varepsilonℕ^∗\right)=99\left(k_1+k_2+...+k_{49}\right)⋮99\Rightarrow M⋮99\left(đpcm\right)\)
123 -5 . (x + 4) = 38
5 . (x + 4) = 123 - 38 = 85
x + 4 = 85 : 5 = 17
x = 17 - 4 = 13
(3x - 24) . 73 = 2.74
(3x - 24) = 2.7 = 14
3x - 16 = 14
3x = 14 + 16 = 30
x = 30 : 3 = 10
bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)
697:(15x+364):x=17
=> 15+360:x = 697:17=41
=> 360:x=41-15=26
=> x=360:26=180/13
92.4-27=(x+350):x+315
=> 1+350:x+315=341
=> 350:x = 341 -316=25
-> x=350:25=14
720:(41-(2x-51)=23.5
=> 41-(2x-51)= 720 :40=18
=> 2x=41-18+51=74
=> x=74:2=37
(x+1)+(x+2)+(x+3)+...+(x+100)=5750
=>(x+x+...+x) +(1+2+3+..+99+100)=5750
=> 100.x +(100+1).100:2= 5750
=>100.x= 5750-5050=700
=> x=700:100=7
( L-i-k-e )
697 : (15x + 364) : x = 17
=> 15 + 360 : x = 697 : 17 = 41
=> 360 : x = 41 - 15 = 26
=> x = 360 : 26 = 180/13
92.4 - 27 = (x + 350) : x + 315
=> 1 + 350 : x + 315 = 341
=> 350 : x = 341 - 316 = 25
-> x = 350: 25 = 14
720 : (41 - (2 x - 51) = 23.5
=> 41 - (2 x -51) = 720 : 40 = 18
=> 2x = 41 - 18 + 51 = 74
=> x = 74 : 2 = 37
(x + 1) + (x + 2) + (x + 3) +...+ (x + 100) = 5750
=>(x + x +...+ x) +(1 + 2 + 3 +...+ 99 + 100) = 5750
=> 100.x + (100 + 1).100 : 2 = 5750
=>100.x = 5750 - 5050 = 700
=> x = 700 : 100 = 7
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
Li_ke đi đồ chó
a). ( x-3)(x²-4)=0
<=> x-3=0=>x=3
<=>(x-2)(x+2)=0. =>x=\(\pm2\)
b). (x²+4)(13-x)=0
<=> ((x+2)(x+2)=0. =>x=-2
<=> 13-x=0. =>x=13
c)2x+1-12=7
<=>2x=7+12-1=18
=>x=18:2=9
d). -16+3+2x=0
<=>2x=16-3=13
=>x=\(\frac{13}{2}\)
e). x-x=0
<=>0x=0
F). x+x=0
<=> 2x=0
<=> x=0
a) \(3^x:3^2=243\)
\(3^{x-2}=3^5\)
=> x - 2 = 5
=> x = 7
b) \(6.2^x+3.2^x=2^x.\left(6+3\right)=2^x.9=9.29=261\)
=> 2x = 9
=> x không tồn tại vì 2 khi nâng lên lũy thừa ra số chẵn.
c) d) tương tự