Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)
S=1999+19992+19993+...+19991998
=(1999+19992)+(19993+19994)+...+(19991997+19991998)
=1999(1+1999)+19993(1+1999)+...+19991997(1+1999)
=1999.2000+19993.2000+...+19991997.2000
=2000.(1999+19993+...+19991997)
Vậy S chia hết cho 2000
TA CÓ
1999+19992+...+19991998
=(1999+19992)+....+(19991997+19991998)
=1999(1+1999)+...+19991997(1+1999)
=2000(1999+19993+...19991997) Chia hết cho 2000
CHÚC BẠN HỌC TỐT
Có : S = (1+2)+(2^2+2^3)+.....+(2^98+2^99)
= 3+2^2.(1+2)+......+2^98.(1+2)
= 3+2^2.3+.....+2^98.3
= 3.(1+2^2+......+2^98) chia hết cho 3
=> S chia hết cho 3
Có : 2S = 2+2^2+....+2^100
S = 2S - S = (2+2^2+....+2^100)-(1+2+2^2+....+2^99) = 2^100 - 1
=> S+1 = 2^100-1+1 = 2^100 = (2^2)^50 = 4^50 = 4^48+2
=> ĐPCM
Tk mk nha