K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

1.

a) 291 và 535

ta có: 291 < 290 = (25)18 = 3218

lại có: 3218 > 2518 = (52)18 = 536 > 535

vậy 291 > 535 

b) 34000 và 92000

ta có: 34000 = (34)1000 = 811000

            92000 = (92)1000 = 811000

vậy 34000 = 92000

c) 2332 và 3223

ta có: 2332 < 2333 = (23)111 = 8111

         3223 > 3222 = (32)111 = 9111

mà 8111 < 9111

vậy 2332 < 3223

2.

a) M = 213 . 57

M = 26 . 27 . 57 = 26 . ( 2.5)7 = 26 . 107 = 64 . 10( 7 chữ số 0)   

vậy M có 10 chữ số

b) N = 32009 . 72010 . 132011 

ta có: 32009 = 32008 = 3.(34)502 = 3.81502 = 3. ...1 = ....3

         72010 = (74)502 . 72 = 2401502 . 49 = ....1 .49 = ....9

         132011 = (134)502 . 133 = 28561502 . 2197 = ...1 . ....7 = ....7

N = ....3 . ....9 . ...7 = ...9

Vậy N có chữ số hàng đơn vị là 9

Bài 1 : So sánh cặp số :2225 và 3150  và Bài 2 : chứng minh rằng :817 – 279  – 913 chia hết cho 405.87 – 218 chia hết cho 14.Bài 3 : cho x > y > 0. chứng minh rằng :x3 > y3x4 > y4Bài 4 : chứng minh rằng :Cho ac = bd thì Cho  với b, d là số nguyên dương  thì .Bài 5 :  tìm x :(2x + 1)(x – 2)(5  – 3x) = 0|x – 1| + 2x  = 8(3x + 5)2 =  Bài 6 : tìm các số x,y , z thỏa :;   và 2x + 5y – 2z = 96 và 2x – 3y + z =...
Đọc tiếp

Bài 1 : So sánh cặp số :

  1. 2225 và 3150
  2.   và 

Bài 2 : chứng minh rằng :

  1. 817 – 279  – 913 chia hết cho 405.
  2. 87 – 218 chia hết cho 14.

Bài 3 : cho x > y > 0. chứng minh rằng :

  1. x3 > y3
  2. x4 > y4

Bài 4 : chứng minh rằng :

  1. Cho ac = bd thì 
  2. Cho  với b, d là số nguyên dương  thì .

Bài 5 :  tìm x :

  1. (2x + 1)(x – 2)(5  – 3x) = 0
  2. |x – 1| + 2x  = 8
  3. (3x + 5)
  4.  

Bài 6 : tìm các số x,y , z thỏa :

  1. ;   và 2x + 5y – 2z = 96
  2.  và 2x – 3y + z = 7

Bài 7 : tính :

  1. S = (-1) + 2 +(-3) + 4 …+(-99) + 100
  2. A = 1 – 3 + 5 – 7 + …+ 149 – 151
  3. B = 2 – 4 + 6 – 8 + … + 102 – 104.
  4. C = 

Bài 8 : tìm giá trị lớn nhất và nhỏ nhất (nếu có ) :

  1. A  = 2 + |x – 1|
  2. B = -|2x +3 | + 5
  3. C = |2x +1| + |3 – 2x|

Bài 9 : một lớp học nếu xếp hàng 5 thì thừa 3, nếu xếp hàng 7 thì thừa 1. Hỏi lớp học có bao nhiêu học sinh, biết số học sinh từ 40 đến 60 học sinh.

Bài 10 : cho hàm số : y = f(x) = 3x2 – 1.

  1. Tính f(-2), f(1/4).
  2. Tìm x để f(x) = 47.
  3. Chứng minh f(x) = f(-x) với mọi x
0
Bài 1. Phân tích số 8030028 thành tổng của 2004 số tự nhiên chẳn liên tiếp.Bài 2: Tính B = 1.2.3 + 2.3.4 + … + (n - 1)n(n + 1) Bài 3 : So sánh cặp số :2225 và 3150  và Bài 4 : Chứng minh rằng :817 – 279  – 913 chia hết cho 405.87 – 218 chia hết cho 14.Bài 5 : Cho x > y > 0. chứng minh rằng :x3 > y3x4 > y4Bài 6 : Chứng minh rằng :Cho ac = bd thì Cho  với b, d là số nguyên dương  thì .Bài 7 :  Tìm x...
Đọc tiếp

Bài 1. Phân tích số 8030028 thành tổng của 2004 số tự nhiên chẳn liên tiếp.

Bài 2: Tính B = 1.2.3 + 2.3.4 + … + (n - 1)n(n + 1) 

Bài 3 : So sánh cặp số :

  1. 2225 và 3150
  2.   và 

Bài 4 : Chứng minh rằng :

  1. 817 – 279  – 913 chia hết cho 405.
  2. 87 – 218 chia hết cho 14.

Bài 5 : Cho x > y > 0. chứng minh rằng :

  1. x3 > y3
  2. x4 > y4

Bài 6 : Chứng minh rằng :

  1. Cho ac = bd thì 
  2. Cho  với b, d là số nguyên dương  thì .

Bài 7 :  Tìm x :

  1. (2x + 1)(x – 2)(5  – 3x) = 0
  2. |x – 1| + 2x  = 8
  3. (3x + 5)\(\frac{16}{121}\)

Bài 8 : Tìm các số x,y , z thỏa :

  1. ;   và 2x + 5y – 2z = 96
  2.  và 2x – 3y + z = 7

Bài 9 : Tính :

  1. S = (-1) + 2 +(-3) + 4 …+(-99) + 100
  2. A = 1 – 3 + 5 – 7 + …+ 149 – 151
  3. B = 2 – 4 + 6 – 8 + … + 102 – 104.
  4. C = 

Bài 10 : Tìm giá trị lớn nhất và nhỏ nhất (nếu có ) :

  1. A  = 2 + |x – 1|
  2. B = -|2x +3 | + 5
  3. C = |2x +1| + |3 – 2x|

Bài 11 : Một lớp học nếu xếp hàng 5 thì thừa 3, nếu xếp hàng 7 thì thừa 1. Hỏi lớp học có bao nhiêu học sinh, biết số học sinh từ 40 đến 60 học sinh.

Bài 12 : Cho hàm số : y = f(x) = 3x2 – 1.

  1. Tính f(-2), f(1/4).
  2. Tìm x để f(x) = 47.
  3. Chứng minh f(x) = f(-x) với mọi x.
1
14 tháng 9 2016

dài thế

2 tháng 1 2017

Bài 1 

số số hạng là 

(99-1) : 1 + 1 = 99 ( số ) 

tỏng là 

(99+1) x 99 : 2= 4950 

đap số 4950 

mấy câu sau tự làm ngại làm lắm ok 

2 tháng 1 2017

Lớp 7 mà bị hỏi bài 9 thì anh thấy quá khó rồi đó.

Gọi \(A\) là số học sinh của lớp. \(A\) chia 5 dư 3 nên \(9A\) chia 5 dư 2.

(CM: \(A=5k+3\Rightarrow9A=45k+27=5\left(9k+5\right)+2\)).

Tương tự, \(A\) chia 7 dư 1 nên \(9A\) chia 7 dư 2.

Vậy \(9A-2\) vừa chia hết cho 5 vừa chia hết cho 7 nên \(9A-2⋮35\).

Do \(40\le A\le60\) nên \(A=43\) thoả, mấy cái còn lại không thoả.

6 tháng 9 2017

Bài làm

 2^332 < 2^333 
2^333=[(2)^3]^111=8^111 
3^223 > 3^222 
3^222=[(3)^2]^111=9^111 
Đáp số: 
3^223 > 2^332

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich