Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (4x2 + y2).[(2x)2 - y2] = (4x2 +y2)(4x2 - y2) = (4x2)2 _ (y2)2 = 16x4 - y4
1.\(x^2-2x-4y^2-4y=\left(x+2y\right)\left(x-2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
2.\(x^4+2x^3-4x-4=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)=\left(x^2-2\right)\left(x^2+2x-2\right)\)
3.\(3x^2-3y^2-2\left(x-y\right)^2=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\left(x-y\right)=\left(x-y\right)\left(3x+3y-2x+2y\right)\)\(=\left(x-y\right)\left(x+5y\right)\)
4.\(x^3-4x^2-9x+36=x^2\left(x-4\right)-9\left(x-4\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)\)
5.\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)
6.\(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)\(=\left(2x+1\right)\left(3-2x-5\right)=\left(2x+1\right)\left(-2-2x\right)=-2\left(2x+1\right)\left(x+1\right)\)
7.\(\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)=\left(x-5\right)\left(x-5+x+5+2x+1\right)\)\(=\left(x-5\right)\left(4x+1\right)\)
8.\(\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)=\left(3x-2\right)\left(3x-6\right)=3\left(3x-2\right)\left(x-2\right)\)
3x^2-2x+1 3x^4-8x^3-10x^2+8x-5 x^2-2x-16/3 3x^4-2x^3+x^2 -6x^3-12x^2+8x-5 -6x^3+4x^2-2x -16x^2+10x-5 -16x^2+32/3x-16/3 -2/3x+1/3
Vậy
- (3x4-8x3-10x2+8x-5):(3x2-2x+1) = \(x^2-2x-\frac{16}{3}\)dư \(\frac{-2}{3}x+\frac{1}{3}\)
x^2-1 x^4-2x^3+2x-1 x^2-2x+1 x^4-x^2 -2x^3+x^2+2x-1 -2x^3+2x x^2-1 x^2-1 0
a, \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
b,\(\left(3x-1\right)^2-16=0\Rightarrow\left(3x-1-4\right)\left(3x-1+4\right)\)
\(\Rightarrow\left(3x-5\right)\left(3x+3\right)=0\Rightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
\(x^2-2x=0\Leftrightarrow x.\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=0+2=2\end{cases}}}.\)
\(\left(3x-1\right)^2-16=0\)
\(\Leftrightarrow\left(3x-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4+1=5\\3x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}}\)
1. \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy ...
\(x\left(x+2\right)-3\left(-x-2\right)=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Vậy ...
Còn cậu nữa chịu rồi !
câu 2 nhé :
\(3x\left(2x-8\right)-\left(2x-8\right)^2=0\)
câu này em phải sử dụng tam thức bậc 2 liệu em đã học chưa z :(????
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)
\(=9\)
Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x
b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)
Áp dụng định lý Bezout:
2x3 + 3x2 + ax + b chia hết cho (x+1).(x-1)
\(\Leftrightarrow\hept{\begin{cases}2.1^3+3.1^2+a.1+b=0\\2.\left(-1\right)^3-3.\left(-1\right)^2+a.\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=-5\\a-b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-5\\b=0\end{cases}}\)
Áp dụng định lý Bezout:
x3 - 4x2+ ax + b chia hết cho x2 - 3x + 2
hay x3 - 4x2+ ax + b chia hết cho (x-1)(x-2)
\(\Leftrightarrow\hept{\begin{cases}1-4+a+b=0\\8-16+2a+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=3\\2a+b=8\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\)