Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-1\end{array}\right.\)
Vậy x = 2 ; x = - 1
b)
\(x^3+x^2+x+1=0\)
\(\Leftrightarrow x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
Vì x2+1 > 0
=> x + 1 = 0
=> x = - 1
Vậy x = - 1
c)
\(\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
Vậy x = 1 ; x = - 3
d)
\(2x\left(3x-5\right)=10-6x\)
\(\Leftrightarrow2x\left(3x-5\right)+2\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{3}\\x=-\frac{1}{2}\end{array}\right.\)
Vậy x = 5 / 3 ; x = - 1 / 2
\(\Leftrightarrow-2x+1-x-2=8\cdot\left(-4x^2+6x-2x\right)+4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow-3x-1+32x^2-48x+16x-4x^2+8x-4=0\)
\(\Leftrightarrow28x^2-27x-5=0\)
\(\text{Δ}=\left(-27\right)^2-4\cdot28\cdot\left(-5\right)=1289>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{27-\sqrt{1289}}{56}\\x_2=\dfrac{27+\sqrt{1289}}{56}\end{matrix}\right.\)
1/ x² - 5x + 6 = 0
⇔ x² - 2x - 3x + 6 = 0
⇔ x(x - 2) - 3(x - 2) = 0
⇔ (x - 2)(x - 3) = 0
⇒S = {2 ; 3}.
1) \(x^2+5x+6=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)
2) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\2-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=2\end{array}\right.\)
3) \(x^2+4x+3=0\)
\(\Leftrightarrow x^2+x+3x+3=0\)
\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
4) \(2x^2-3x-5=0\)
\(\Leftrightarrow2x^2+2x-5x-5=0\)
\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=\frac{5}{2}\end{array}\right.\)
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)
2) 2x4-21x3+74x2-105x+50=0
<=>(2x4-2x3)+(-19x3+19x2)+(55x2-55x)+(-50x+50)=0
<=>2x3.(x-1)-19x2.(x-1)+55x.(x-1)-50.(x-1)=0
<=>(x-1)(2x3-19x2+55x-50)=0
<=>(x-1)[(2x3-20x2+50x)+(x2+5x-50)]=0
<=>(x-1)[2x.(x-5)2+(x2-5x+10x-50)]=0
<=>(x-1){2x.(x-5)2+[x.(x-5)+10.(x-5)]}=0
<=>(x-1)[2x.(x-5)2+(x-5)(x+10)]=0
<=>(x-1)(x-5)(2x2-10x+x+10)=0
<=>(x-1)(x-5)(2x2-5x-4x+10)=0
<=>(x-1)(x-5)[x.(2x-5)-2.(2x-5)]=0
<=>(x-1)(x-5)(x-2)(2x-5)=0
<=>x=1 hoặc x=5 hoặc x=2 hoặc x=5/2
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
+) <=> \(x^3-3x^2+3x-1+3x^2+6x+8-x^3=17\)
<=>9x=10
<=> x=\(\frac{10}{9}\)
+) \(x\left(x^2-25\right)-x^3-8=3\)<=> \(x^3-x^3-25x=3+8\)
<=> x=\(-\frac{11}{25}\)
1. \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy ...
\(x\left(x+2\right)-3\left(-x-2\right)=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Vậy ...
Còn cậu nữa chịu rồi !
câu 2 nhé :
\(3x\left(2x-8\right)-\left(2x-8\right)^2=0\)
câu này em phải sử dụng tam thức bậc 2 liệu em đã học chưa z :(????