Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có đăt a=8.a1 b=8.b1(a1;b1)=1
a+b=8.(a1+b1)=32 nên a1+b1=4
gia sử a1>b1 va (a1;b1)=1
nen a1=3,b1=1
nen a=24
b=8
to làm cau a câu tự lam câu b đi
1. ƯCLN(a, b) = 8 suy ra a và b chia hết cho 8
mà có thêm một cách tìm a và b là a + b = 32 suy ra ta phải tìm các bội của 8 mà là ước của 32
có hai số là: 8 và 32
=> nếu a = 8 và b = 32 - 8 = 24 thì a + b = 32(chọn)
nếu a = 32 và b = 0 thì hai số nàu có ƯCLN là 32(loại)
suy ra a = 24 và b = 8
2. bạn làm tương tự
tick mik nha
1.a=8m UCLN(m,n)=1
b=8n
=>a+b=8m+8n=8(m+n)=32
=>m+n=4=>Ta có bảng sau
m | 1 | 2 | 3 |
n | 3 | 2 | 1 |
a | 8 | 16 | 24 |
b | 24 | 16 | 8 |
chọn loại chọn
=>Ta có a=8 a=24
b=24 b=8
Tham khảo câu 1
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$