\(x,y,z\in\left[-1;2\right]\&...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

DO:    \(x;y;z\in[-1;2]\Rightarrow-1\le x;y;z\le2\)

=>   \(\left(x+1\right)\left(x-2\right)\le0;\left(y+1\right)\left(y-2\right)\le0;\left(z+1\right)\left(z-2\right)\le0\)

=>    \(x^2-x-2\le0;y^2-y-2\le0;z^2-z-2\le0\)

=>   \(x^2+y^2+z^2-\left(x+y+z\right)-6\le0\)

=>   \(x^2+y^2+z^2\le x+y+z+6\)

=>   \(x^2+y^2+z^2\le6\)

DẤU "=" XẢY RA <=>   

\(\left(x;y;z\right)=\left(-1;-1;2\right);\left(-1;2;-1\right);\left(2;-1;-1\right);\left(-2;1;1\right);\left(1;-2;1\right);\left(1;1;-2\right)\)    

20 tháng 7 2016

Nhìn bài của chú là chứng cả mắt, và chú cũng vậy? Thế giới của chú thật nghèo nàn.

20 tháng 7 2016

Ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow\)  \(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2\ge xy+yz+xz\)  (với mọi  \(x,y,z\in R\)  )

Do đó,  \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\le x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)\)

Hay  nói cách khác,  \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow\)  \(-3\le x+y+z\le3\)  

Khi đó,  \(A\le3+27=30\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=3\end{cases}\Leftrightarrow}\)  \(x=y=z=1\)

Vậy,  \(A_{max}=30\)  khi  \(x=y=z=1\)

17 tháng 8 2020

Ta có: 

\(3x^4+1=x^4+x^4+x^4+1\ge4\sqrt[4]{x^4.x^4.x^4.1}=4x^3\)

Tương tự: \(3y^4+1\ge4y^3\) ; \(3z^4+1\ge4z^3\)

=> \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\) (1)

Thay vào:

\(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)

\(A=x^3+x^2y+y^3+y^2z+z^3+z^2x\)

\(A=x^3+y^3+z^3+\left(x^2y+y^2z+z^2x\right)\)

\(\le x^3+y^3+z^3+\left(\frac{x^3+x^3+y^3+y^3+y^3+z^3+z^3+z^3+x^3}{3}\right)\)

\(=2\left(x^3+y^3+z^3\right)\)

\(=\frac{1}{2}\left[4\left(x^3+y^3+z^3\right)\right]\le\frac{1}{2}\left[3\left(x^4+y^4+z^4\right)+3\right]\)

\(=\frac{1}{2}\left[3.3+3\right]=\frac{12}{2}=6\)

Dấu "=" xảy ra khi: \(x=y=z=1\)

Vậy Max(A) = 6 khi x = y = z = 1

24 tháng 10 2016

Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)

\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)

Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)

Theo đề bài ta có

\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)

Dấu = xảy ra khi x = y = z = 1

27 tháng 10 2020

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

29 tháng 10 2020

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2