Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)
Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)
Th2: \(x,y\ne1\)
\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)
Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0
Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)
Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4
Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)
b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)
* Th1: \(x^2+2y^2=0\)(*)
Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ
* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
a) \(3x^2-7x+2=0\Leftrightarrow\left(3x^2-6x\right)-\left(x-2\right)=0\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)Vậy phương trình có 2 nghiệm \(\left\{\frac{1}{3};2\right\}\)
b) \(x^4-5x+4=0\Leftrightarrow\left(x^4-x\right)-4\left(x-1\right)=0\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^3+x^2+x-4=0\end{cases}}\)Xét phương trình: \(x^3+x^2+x-4=0\)
Đặt \(x=y-\frac{1}{3}\)thì phương trình trở thành \(y^3+\frac{18}{27}y-\frac{115}{27}=0\)có các hệ số \(a=\frac{18}{27},b=\frac{-115}{27}\)
\(\Rightarrow D=\left(\frac{b}{2}\right)^2+\left(\frac{a}{3}\right)^3=\left(\frac{\frac{-115}{27}}{2}\right)^2+\left(\frac{\frac{18}{27}}{3}\right)^3=\frac{491}{108}\)
\(\Rightarrow y=\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}\)
\(\Rightarrow x=\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}-\frac{1}{3}\)
Vậy phương trình có 2 nghiệm \(\left\{1;\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}-\frac{1}{3}\right\}\)
c) \(\hept{\begin{cases}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-\frac{2\sqrt{5}}{5}y=\frac{7\sqrt{5}}{5}\left(1\right)\\x-\sqrt{5}y=2\sqrt{5}\left(2\right)\end{cases}}\)
Lấy (1) - (2), ta được: \(\frac{3\sqrt{5}}{5}y=-\frac{3\sqrt{5}}{5}\Leftrightarrow y=-1\). Từ đó tìm được \(x=\sqrt{5}\)
Vậy hệ có 1 nghiệm \(\left(x;y\right)=\left(\sqrt{5};-1\right)\)