K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC có BN/BA=BM/BC

nên NM//AC và NM=AC/2

=>NM//AP và NM=AP

=>ANMP là hình bình hành

mà góc NAP=90 độ

nên ANMP là hình chữ nhật

b: Xét tứ giác CMNP có

NM//CP

NM=CP

Do đó: CMNP là hình bình hành

=>CN cắt MP tại trung điểm của mỗi đường

=>E là trung điểm của NC

19 tháng 2 2022

1/ Xét \(\Delta ABC\) cân tại A:

AM là đường trung tuyến (M là trung điểm của cạnh đáy BC).

\(\Rightarrow\) AM là đường cao (Tính chất tam giác cân).

\(\Rightarrow AM\perp BC.\Rightarrow\widehat{AMC}=90^o.\)

Xét \(\Delta AMC\) và \(\Delta MNC:\)

\(\widehat{AMC}=\widehat{MNC}\left(=90^o\right).\\ \widehat{ACM}chung.\)

\(\Rightarrow\Delta AMC\sim\Delta MNC\left(g-g\right).\)

2/ \(\Delta AMC\sim\Delta MNC\left(cmt\right).\)

\(\Rightarrow\dfrac{AM}{MN}=\dfrac{MC}{NC}\) (2 cạnh tương ứng).

\(\Rightarrow AM.NC=MN.MC.\)

Ta có: \(MN=2OM\) (O là trung điểm của MN).

           \(MC=\dfrac{1}{2}BC\) (M là trung điểm của BC).

\(\Rightarrow AM.NC=2OM.\dfrac{1}{2}BC.\)

\(\Rightarrow AM.NC=OM.BC.\)

19 tháng 2 2022

thx u