Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có BN/BA=BM/BC
nên NM//AC và NM=AC/2
=>NM//AP và NM=AP
=>ANMP là hình bình hành
mà góc NAP=90 độ
nên ANMP là hình chữ nhật
b: Xét tứ giác CMNP có
NM//CP
NM=CP
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
=>E là trung điểm của NC
1/ Xét \(\Delta ABC\) cân tại A:
AM là đường trung tuyến (M là trung điểm của cạnh đáy BC).
\(\Rightarrow\) AM là đường cao (Tính chất tam giác cân).
\(\Rightarrow AM\perp BC.\Rightarrow\widehat{AMC}=90^o.\)
Xét \(\Delta AMC\) và \(\Delta MNC:\)
\(\widehat{AMC}=\widehat{MNC}\left(=90^o\right).\\ \widehat{ACM}chung.\)
\(\Rightarrow\Delta AMC\sim\Delta MNC\left(g-g\right).\)
2/ \(\Delta AMC\sim\Delta MNC\left(cmt\right).\)
\(\Rightarrow\dfrac{AM}{MN}=\dfrac{MC}{NC}\) (2 cạnh tương ứng).
\(\Rightarrow AM.NC=MN.MC.\)
Ta có: \(MN=2OM\) (O là trung điểm của MN).
\(MC=\dfrac{1}{2}BC\) (M là trung điểm của BC).
\(\Rightarrow AM.NC=2OM.\dfrac{1}{2}BC.\)
\(\Rightarrow AM.NC=OM.BC.\)
AP ko thể vuông góc với MN bạn ạ vì trong tamgiác APN có góc PNA bằng 90 độ rồi