\(\dfrac{a}{b}=\dfrac{c}{d}\), hãy suy ra các tỉ lệ thức sau :

a) <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b,

, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

18 tháng 4 2017

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


11 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

31 tháng 5 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Lần lượt thay a và c vào các ý cần chứng minh, áp dụng theo tính chất phân phối giữa phép nhân đối với phép cộng (hay phép trừ) để tính ở mỗi vế.

Mẫu: a) Ta có : \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

13 tháng 8 2017

a)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(a=b.k\)

\(c=d.k\)

\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(a=b.k\)

\(c=d.k\)\(\dfrac{a-b}{a}=1-\dfrac{b}{a}=1-\dfrac{b}{bk}=1-\dfrac{1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=1-\dfrac{d}{c}=1-\dfrac{d}{dk}=1-\dfrac{1}{k}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

10 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) thì \(a=b.k\) , \(c=d.k\)

Ta tính giá trị của các tỉ số \(\dfrac{a-b}{a};\dfrac{c-d}{c}\) theo \(k\)

\(\dfrac{a-b}{a}=\dfrac{b.k-b}{b.k}=\dfrac{b.\left(k-1\right)}{b.k}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{d.k-d}{d.k}=\dfrac{d\left(k-1\right)}{d.k}=\dfrac{k-1}{k}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

29 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)

Ta có : \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{k}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\dfrac{a-b}{a}=k=\dfrac{c-d}{c}\)

\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\left(ĐPCM\right)\)

Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

11 tháng 5 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\left(đpcm\right)\)

Vậy...

11 tháng 5 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Từ đó suy ra : \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)

3 tháng 5 2017

C) đúng. Vì

\(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

=>\(\dfrac{c}{a}=\dfrac{d}{b}\)

18 tháng 4 2017

Đáp án C là đúng, vì ad = bc


10 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc=>ab+ad=ab+bc\)

\(a\left(b+d\right)=b\left(a+c\right)\)

\(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

28 tháng 7 2017

đúng

4 tháng 10 2017

\(\left(a-2c\right)\left(b+2d\right)=\left(b-2d\right)\left(a+2c\right)\)

\(\Leftrightarrow ab+2ad-2bc-4cd=ab+2bc-2ad-4cd\)

\(\Leftrightarrow2ad+2ad=2bc+2bc\Leftrightarrow4ab=4bc\)

\(\Leftrightarrow ad=bc\Rightarrow\dfrac{a}{b}=\dfrac{c}{d},\left(a,b,c,d\ne0\right)\)

17 tháng 6 2017

surf trc khi hỏi

17 tháng 6 2017

ko thik surf trc khi ? đấy bn có ý gì ko nếu bn ko thik trả lời thì thôi mik ko ép chứ mik thik hỏi gì thì kệ mik mong Ace Legona hiểu cho.hihi

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\\ ac+bc-2ad-2bd=ac+ad-2bc-2bd\\ bc-2ad=ad-2bc\\ 3bc=3ad\\ bc=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

12 tháng 7 2017

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)

\(\Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)

\(\Leftrightarrow2ad+ad=2bc+bc\)

\(\Leftrightarrow3ad=3bc\)

\(\Leftrightarrow ad=bc\rightarrowđpcm\)