Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết đề là ba số đầu khác 123 hay số đầu tiên khác 1, 2, 3. Đây t làm theo cách hiểu thứ nhất nha.
Theo giả thiết, số cách sắp xếp 3 chữ số đầu tiên là \(A_8^3-1=335\)
Số cách sắp xếp 2 chữ số cuối là \(A_5^2=20\)
\(\Rightarrow\) Có \(335.20=6700\) cách lập số tự nhiên thỏa mãn yêu cầu bài toán.
Không biết đúng không nữa-.-
Đáp án : D
Để tính nhanh với bài này ta dùng quy tắc phần bù.
Trước tiên ta tính số các số chẵn có 5 chữ số đôi một khác nhau và được lập ra từ các chữ số của tập A.
+ Gọi các số đó là
e có 4 cách chọn( vì x là số chẵn nên e có thể là 2;34;6;8); a có 8 cách; b có 7 cách; c có 6 cách và d có 5 cách.
Nên có tất cả 4.8.7.6.5=6720 số
+ Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra b có 3 cách chọn (b có thể là 2;4;8), a có 5 cách chọn nên có số.
+ Suy ra có tất cả 6720 - 15 = 6705 số cần tìm.
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Ta cần đếm số các số tự nhiên dạng , với a;b;c là các số phân biệt thuộc tập X.
Công đoạn 1: Chọn c ∈ X, để số tự nhiên chia hết cho 5 thì chỉ có 1 cách chọn c (c = 5).
Công đoạn 2: Chọn a ∈ X\{5} , có 5 cách.
Công đoạn 3: Chọn b ∈ X\{5;a} , có 4 cách.
Vậy theo quy tắc nhân, số các số tự nhiên thỏa mãn yêu cầu là: 1.5.4 = 20 số.
Chọn C.
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
Chọn C
Giả sử số lập được có dạng
Ta có
Vì nên ta có các trường hợp sau
Trường hợp 1: a 1 , a 2 , a 3 , a 4 , a 5 , a 6 được chọn từ
+ Có 3 cách chọn chọn a 6
+ Có 5! cách chọn chọn bộ 5 số
Suy ra có 3.5! = 360 số.
Trường hợp 2: a 1 , a 2 , a 3 , a 4 , a 5 , a 6 được chọn từ
+ a 6 = 0, có 5! cách chọn bộ 5 số
+ a 6 ≠ 0 khi đó a 6 có 3 cách chọn, a 1 có 4 cách chọn và có 4! cách chọn bộ 4 số
Suy ra có 5! + 3.4.4!= 408 số
Trường hợp 3: a 1 , a 2 , a 3 , a 4 , a 5 , a 6 được chọn từ
+ a 6 = 0, có 5! cách chọn bộ 5 số
+ a 6 ≠ 0 khi đó a 6 có 1 cách chọn, a 1 có 4 cách chọn và có 4! cách chọn bộ 4 số
Suy ra có 5! + 1.4.4! = 216 số
Vậy có: 360 + 408 + 216 = 984 số.