Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình tròn S = πR 2
Gọi bán kính đường tròn đáy hình nón là r(0<r<R) ta có
Xét hàm
có
Bảng biến thiên:
Do đó thể tích V đạt GTLN tại
r
=
R
2
3
. Khi đó
Vậy
Chọn đáp án D.
Đáp án D
Phương pháp:
- Lập hàm tinh thể tích khối nón, xét hàm suy ra GTLN.
- Tính diện tích S , S ' với chú ý S là diện tích hình tròn và S ' là diện tích xung quanh của hình nón.
Đáp án D
Gọi r;h lần lượt là bán kính đáy và chiều cao của khối nón ⇒ V N = 1 3 π r 2 h
Mà h = l 2 − r 2 = R 2 − r 2 = 81 − r 2 Suy ra V N = 1 3 π r 2 81 − r 2 = π 3 r 4 81 − r 2
Ta có r 2 . r 2 . 162 − 2 r 2 2 ≤ r 2 + r 2 + 162 − 2 r 2 3 2.27 = 78732 ⇒ V ≤ π 3 . 78732 ⇒ V max = 78732 3 π
Dấu " = " xaye ra ⇔ 3 r 2 = 162 ⇔ r = 3 6 ⇒ Độ dài cung tròn là l = 2 π r = 6 π 6
Đáp án A
Phương pháp giải:
Tìm giá trị lớn nhất của thể tích khối nón và áp dụng công thức tính độ dài cùng tròn
Lời giải:
Gọi r, h lần lượt là bán kính đáy, chiều cao của phễu hình nón.
Thể tích của khối nón là với l là độ dài đường sinh và l = R bán kính tấm bìa hình tròn => vì chuẩn hóa R = 1
Xét hàm số trên (0;1) có
Ta có
Do đó Dấu “=” xảy ra khi và chỉ khi
Mà độ dài cung phần cuộn làm phễu chính là chu vi đáy hình nón
Đáp án D.
Cung AB có bán kính O A = 4 d m và số đo bằng π 2 r a d nên có độ dài là l A B = π 2 .4 = 2 π d m .
Từ giả thiết ta có đỉnh của hình nón là O, đường sinh O A = 4 d m và chu vi đáy hình nón là C = l A B = 2 π d m .
Gọi I là tâm đáy, khi đó bán kính đáy của hình nón là r = I A = C 2 π = 2 π 2 π = 1 (dm).
Do vuông tại I nên ta có O A 2 = O I 2 + I A 2 ⇒ h = O I = O A 2 − I A 2
⇒ h = 4 2 − 1 2 = 15 ≈ 3,873 (dm).