Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔOAC vuông tại O
=>\(OA^2+OC^2=AC^2\)
=>\(AC^2=R^2+R^2=2R^2\)
=>\(AC=R\sqrt{2}\)
b: Xét (O) có
\(\widehat{BKM}\) là góc có đỉnh ở trong đường tròn chắn hai cung BM và CA
=>\(\widehat{BKM}=\dfrac{1}{2}\left(sđ\stackrel\frown{BM}+sđ\stackrel\frown{CA}\right)\)
=>\(\widehat{IKM}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{BM}+sđ\stackrel\frown{BC}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(1\right)\)
Xét (O) có
\(\widehat{IMC}\) là góc tạo bởi tiếp tuyến MI và dây cung MC
Do đó: \(\widehat{IMK}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{IKM}=\widehat{IMK}\)
=>IM=IK
c: \(\widehat{IKM}=\dfrac{1}{2}\left(sđ\stackrel\frown{BM}+sđ\stackrel\frown{AC}\right)\)
\(=\dfrac{1}{2}\left(50^0+90^0\right)=70^0\)
ΔIMK cân tại I
=>\(\widehat{KIM}=180^0-2\cdot70^0=40^0\)
a: Xét (O) có
\(\widehat{AMC}\) là có đỉnh ở bên ngoài đường tròn chắn hai cung AC và BD
=>\(\widehat{AMC}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{BD}-sđ\stackrel\frown{AC}\right)=\dfrac{1}{2}\left(180^0-60^0\right)=60^0\)
Xét (O) có
ΔBAD nội tiếp
BD là đường kính
Do đó: ΔBAD vuông tại A
=>DA\(\perp\)MB tại A
Xét (O) có
ΔCBD nội tiếp
BD là đường kính
Do đó: ΔCBD vuông tại C
=>BC\(\perp\)MD tại C
Xét tứ giác MAIC có \(\widehat{MAI}+\widehat{MCI}+\widehat{AMC}+\widehat{AIC}=360^0\)
=>\(\widehat{AIC}+60^0+90^0+90^0=360^0\)
=>\(\widehat{AIC}=120^0\)
b: Xét ΔMCB vuông tại C và ΔMAD vuông tại A có
\(\widehat{M}\) chung
Do đó: ΔMCB~ΔMAD
=>\(\dfrac{MC}{MA}=\dfrac{MB}{MD}\)
=>\(MA\cdot MB=MC\cdot MD\)