K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

đề kêu gì vậy em 

28 tháng 10 2019

đầu bài yêu cầu j vậy bạn:))))))

7 tháng 9 2017

a)\(x^3+3xy+y^3-1\)

\(=x^3+3x^2y+3xy^2+y^3-1-3x^2y-3xy^2+3xy\)

\(=\left(x+y\right)^3-1^3-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

b) Đặt \(B=3x^2+22xy+11x+37y+7y^2+10\)

Giả sử \(B=\left(ax+by+c\right)\left(mx+ny+p\right)\)

\(=amx^2+anxy+apx+bmxy+bny^2+bpy+cmx+cny+cp\)

\(=amx^2+\left(an+bm\right)xy+\left(ap+cm\right)x+bny^2+\left(bp+cn\right)y+cp\)

Ta được hệ: \(\left\{{}\begin{matrix}am=3;an+bm=22\\ap+cm=11;bn=7\\bp+cn=37;cp=10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3;b=1\\c=5;m=1\\n=7;p=2\end{matrix}\right.\)

Vậy B phân tích được thành \(\left(3x+y+5\right)\left(x+7y+2\right)\).

8 tháng 9 2017

a/ =(x+y)3-1-3xy(x+y-1)

=(x+y-1)(x2+2xy+y2+xy+1)-3xy(x+y-1)

=(x+y-1)(x2+y2+1)

mơn nha

26 tháng 12 2018

tự làm

25 tháng 9 2017

Ta có : x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

CÁC Ý SAU TƯƠNG TỰ

19 tháng 2 2018

   x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

25 tháng 9 2017

1

x3-7x+6

=x3+0x2-7x +6

= x3-x2+x2-x-6x+6

=(x3-x2)+(x2-x)-(6x-6)

=x2(x-1)+x(x-1)-6(x-1)

=(x-1)(x2+x-6)

=(x-1)(x2+3x-2x-6)

=(x-1)[x(x+3)-2(x+3)]

=(x-1)(x-2)(x+3)

25 tháng 9 2017

7) (x+2)(x+3)(x+4)(x+5)-24

=(x+2)(x+5) (x+3)(x+4)-24

=[x(x+5)+2(x+5)][x(x+4)+3(x+4)]-24

=[x2+5x+2x+10][x2+4x+3x+12]-24

=[x2+7x+10][x2+7x+12]-24

đặt a=x2+7x+10

=>x2+7x+12=a+2

=a(a+2)-24

=a2+2a-24

=a2+6a-4a-24

=(a2+6a)-(4a+24)

=a(a+6)-4(a+6)

=(a+6)(a-4)

thay a= x2+7x+10 vào ta được

(x2+7x+10+6)(x2+7x+10-4)

=(x2+7x+16)(x2+7x+6)

1: Ta có: \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

\(=x^6\left(x-2\right)^2\left(x+2\right)^2\)

2: Ta có: \(m^3+27\)

\(=\left(m+3\right)\left(m^2-3m+9\right)\)

3: Ta có: \(x^3+8\)

\(=\left(x+2\right)\left(x^2-2x+4\right)\)

4: Ta có: \(\frac{1}{27}+a^3\)

\(=\left(\frac{1}{3}+a\right)\left(\frac{1}{9}-\frac{a}{3}+a^2\right)\)

5: Ta có: \(8x^3+27y^3\)

\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6: Ta có: \(\frac{1}{8}x^3+8y^3\)

\(=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

7: Ta có: \(8x^6-27y^3\)

\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

8: Ta có: \(\frac{1}{8}x^3-8\)

\(=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

9: Ta có: \(\frac{1}{64}x^6-125y^3\)

\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)

10: Ta có: \(\left(a+b\right)^3-c^3\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)\cdot c+c^2\right]\)

\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)

11: Ta có: \(x^3-\left(y-1\right)^3\)

\(=\left[x-\left(y-1\right)\right]\cdot\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)

\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

12: Ta có: \(x^6+1\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

30 tháng 7 2020

1) \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

2) \(m^3+27=m^3+3^3=\left(m+3\right)\left(m^2-3m+3^2\right)\)

3) \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+2^2\right)\)

4) \(\frac{1}{27}+a^3=\left(\frac{1}{3}\right)^3+a^3=\left(\frac{1}{3}+a\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}a+a^2\right]\)

5) \(8x^3+27y^3=\left(2x\right)^3+\left(3y\right)^3=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6) \(\frac{1}{8}x^3+8y^3=\left(\frac{1}{2}x\right)^3+\left(2y\right)^3=\left(\frac{1}{2}x+2y\right)\left[\left(\frac{1}{2}x\right)^2-\frac{1}{2}x.2y+\left(2y\right)^2\right]=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

8) \(\frac{1}{8}x^3-8=\left(\frac{1}{2}x\right)^3-2^3=\left(\frac{1}{2}x-2\right)\left[\left(\frac{1}{2}x\right)^2+\frac{1}{2}x.2+2^2\right]=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

10) \(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left[\left(a^2+2ab+b^2\right)+ac+bc+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)11) \(x^3-\left(y-1\right)^3=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]=\left(x-y+1\right)\left[x^2+xy-x+\left(y^2-2y+1\right)\right]=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

P/s: Đăng ít thôi chớ bạn!

16 tháng 10 2016

hoa mắt chóng mặt

16 tháng 10 2016

Nhờ bạn làm cho mik ít câu cũng dc

16 tháng 10 2016

sao nhiều thế bạn

26 tháng 8 2017

quá nhiều

16 tháng 8 2020

a/ \(x^4+16\)

\(=x^4+4x^2+16-4x^2\)

\(=\left(x^4+4x^2+16\right)-4x^2\)

\(=\left(x^2+4\right)^2-\left(2x\right)^2\)

\(=\left(x^2+4-2x\right)\left(x^2+4+2x\right)\)

b/ \(64x^4+y^4\)

\(=64x^4+y^4+16x^2y^2-16x^2y^2\)

\(=\left(64x^4+y^4+16x^2y^2\right)-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(y^2+8x^2-4xy\right)\left(8x^2+y^2-4xy\right)\)