K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2023

Gọi P là giao điểm thứ hai của AH và (O). Dễ thấy \(HA.HP=HB.HD\Rightarrow HP=\dfrac{HB.HD}{HA}=\dfrac{3}{2}\)

Mặt khác, trong đường tròn (O) có AC là đường kính nên \(\widehat{APC}=90^o\) hay \(\widehat{HCP}=90^o\)

Theo đề bài, ta có \(\widehat{HKC}=\widehat{KHP}=90^o\). Suy ra tứ giác CKHP là hình chữ nhật \(\Rightarrow CK=HP\). Mà \(HP=\dfrac{3}{2}\Rightarrow CK=\dfrac{3}{2}\)

a: Xét tứ giác AHMK có \(\widehat{AHM}+\widehat{AKM}=90^0+90^0=180^0\)

nên AHMK là tứ giác nội tiếp đường tròn đường kính AM

Tâm là trung điểm của AM

b: Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn cung BD

\(\widehat{BCD}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{BAD}=\widehat{BCD}\left(1\right)\)

Ta có: AKMH là tứ giác nội tiếp

=>\(\widehat{KAM}=\widehat{KHM}\)

=>\(\widehat{BAD}=\widehat{KHM}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{BCD}=\widehat{KHM}\)

Xét (O) có

\(\widehat{DAC}\) là góc nội tiếp chắn cung DC

\(\widehat{DBC}\) là góc nội tiếp chắn cung DC

Do đó: \(\widehat{DAC}=\widehat{DBC}\left(3\right)\)

Ta có: AHMK là tứ giác nội tiếp

=>\(\widehat{MAH}=\widehat{MKH}=\widehat{DAC}\left(4\right)\)

Từ (3),(4) suy ra \(\widehat{DBC}=\widehat{MKH}\)

Xét ΔMKH và ΔDBC có

\(\widehat{MKH}=\widehat{DBC}\)

\(\widehat{MHK}=\widehat{DCB}\)

Do đó: ΔMKH~ΔDBC

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếpb/ Chứng minh rằng góc ACB+ góc AEB= 45 độ2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A...
Đọc tiếp

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.

1
18 tháng 4 2016

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

20 tháng 8 2021

ui sợ thế sợ quá bạn ạ

2 tháng 12 2015

1) Gọi cạnh tam giác đều là a => đường cao h =\(\frac{a\sqrt{3}}{2}\)=

mà h = 3/2R => \(\frac{a\sqrt{3}}{2}\)=\(\frac{3}{2}.\frac{4}{3}\) =2=> a =\(\frac{4}{\sqrt{3}}\)

S =ah/2 =\(\frac{4}{\sqrt{3}}\).2/2 =\(\frac{4}{\sqrt{3}}\)

2) ABC vuông tại A ( 62+82 =102)

M là điểm chính giữa => AM =CM => OM là trung trực AC => Tam giác OIC vuông tại  I 

 => OI = \(\sqrt{OC^2-IC^2}=\sqrt{5^2-4^2}=3\)

2 tháng 12 2015

câu 2 ; theo đề bài ta có tam giác ABC vuông tại A

VÌ OM là đường kính đi qua dây AC nên OM vuông góc với AC hay OI vuông góc với AC và AI=IC[tính chất đường kính]

Do đó OI song song với AB[cùng vuông góc với AC]

theo định lí ta-lét ta có \(\frac{OI}{AB}=\frac{IC}{AC}\)

mà IC=AC =8/2=4 cm

thay vào giải ra OI=6*4/8=3 cm

còn câu 1 tớ cũng đang định hỏi đây