K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Kí hiệu: ∠ : góc

Các góc của tứ giác là ∠A, ∠B, ∠C, ∠D (∠A > 0) tạo thành cấp số cộng:

⇒ ∠B = ∠A + d,

    ∠C = ∠A + 2d,

    ∠D = ∠A + 3d.

Theo giả thiết, góc C gấp năm lần góc A nên:

    ∠C = 5∠A

⇒ ∠A + 2d = 5∠A

⇒ 2d = 4∠A

hay d = 2.∠A

Tổng 4 góc của 1 tứ giác bằng 360º nên ta có:

⇒ ∠A + ∠B + ∠C + ∠D = 360º

⇒ ∠A + ∠A + d + ∠A + 2d + ∠A + 3d = 360º

=> 4∠A +6d = 360º

⇒ 4∠A + 12∠A = 360º ( do d = 2.ºA)

⇒ 16∠A = 360º

⇒ ∠A = 22º30'

⇒ d = 45º.

Vậy ∠A = 22º30' ; ∠B = 67º30'; ∠C = 112º30’; ∠D = 157º30'

9 tháng 4 2017

Theo giả thiết ta có: A, B, C, D là một cấp số nhân và C = 4A

Theo tính chất của cấp số nhân ta có:

B2 = AC = A.(4A) = 4A2 ⇒ B = 2A

C2 = BD ⇒ (4A)2 = (2A).D ⇒ D = 8A

Mặt khác: A + B + C + D = 3600

⇒ A + 2A + 4A + 8A = 3600

⇒ A = 240 ⇒ B = 480, C = 960, D = 1920.



HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Do A, B, C, D theo thứ tự lập thành một cấp số cộng nên ta có:

B = A + d; C = A + 2d; D = A + 3d.

Mặt khác: A + B + C + D = 360°

⇔ A + A + d + A + 2d + A + 3d = 360°

⇔ 4A + 6d = 360°

⇔ 2A + 3d = 180°

Ta lại có: A + 2d = 5A ⇔ d = 2A

⇒ 8A = 180°

⇒ A = 22,5° và d = 45°

⇒ B = 67,5°, C = 112,5°, D = 157,5°.

14 tháng 10 2017

Chọn D.

Ta có: B A C D nên A < 180º

Lại có tan A không xác định nên A = 90º

Do 4 góc tứ giác lập thành cấp số cộng và B A C D nên

B = 90 - d; C = 90 + d; D = 90 + 2d.

Ta có: A + B + C + D = 360 90 + 90 – d + 90 + d + 90 + 2d = 360

d = 0 A = B = C = D = 90º.

8 tháng 1 2018

Đáp án C

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Giả sử số đo bốn góc của tứ giác lần lượt là \({u_1},{u_1}.q,{u_1}.{q^2},{u_1}.{q^3}\left( {{u_1},q > 0} \right)\).

Tổng số đo bốn góc của một tứ giác bằng \({360^ \circ }\) nên ta có phương trình:

\({u_1} + {u_1}.q + {u_1}.{q^2} + {u_1}.{q^3} = 360 \Leftrightarrow {u_1}\left( {1 + q + {q^2} + {q^3}} \right) = 360\left( 1 \right)\)

Số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất nên ta có phương trình:

\(\frac{{{u_1}.{q^3}}}{{{u_1}}} = 8 \Leftrightarrow {q^3} = 8 \Leftrightarrow q = 2\left( 2 \right)\)

Thế (2) vào (1) ta có: \({u_1}\left( {1 + 2 + {2^2} + {2^3}} \right) = 360 \Leftrightarrow {u_1} = 24\)

Vậy số đo bốn góc của tứ giác đó là: \({24^ \circ };{24^ \circ }.2 = {48^ \circ };{24^ \circ }{.2^2} = {96^ \circ };{24^ \circ }{.2^3} = {192^ \circ }\).

b) Giả sử cấp số nhân đó có số hạng đầu \({u_1}\) và công bội \(q\).

Theo đề bài ta có: \(\left\{ \begin{array}{l}{u_1} =  - 2\\{u_8} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\{u_1}.{q^7} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\{q^7} =  - 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\q =  - 2\end{array} \right.\).

Vậy ta cần viết thêm sáu số là:

\( - 2.\left( { - 2} \right) = 4;4.\left( { - 2} \right) =  - 8;\left( { - 8} \right).\left( { - 2} \right) = 16;16.\left( { - 2} \right) =  - 32;\left( { - 32} \right).\left( { - 2} \right) = 64;64.\left( { - 2} \right) =  - 128\)

Số hạng thứ 15 của cấp số nhân là: \({u_{15}} = {u_1}.{q^{14}} =  - 2.{\left( { - 2} \right)^{14}} =  - 32768\).

11 tháng 12 2017

Chọn A

Gọi số đo các góc của tứ giác ABCD lần lượt là :

   u 1   =     A ​ =   30 ;     u 2 =    30 + ​ d ;     u 3 = 30 + ​ 2 d ;     u 4 =    30   + 3 d

Tổng bốn góc của tứ  giác bằng 3600  nên: 

u 1 + u 2 + u 3 + u 4 = 360 ⇔ 30 + 30 + d + 30 + 2 d + 30 + 3 d = 360 ⇔ 6 d =    240 ⇔ d = 40  .

Vây công sai d = 40.

12 tháng 1 2017

Chọn A

Gọi d=2a là công sai. Bốn số phải tìm là:

A=(x-3a); B=(x-a); C=(x+a); D=(x+3a). Ta có hệ phương trình:

10 tháng 8 2019

Đáp án D

20 tháng 4 2016

Gọi d = 2a là công sai. Bốn số phải tìm là \(A=\left(x-3a\right);B=\left(x-a\right);C=\left(x+a\right);D=\left(x+3a\right)\)

Ta có hệ phương trình :

\(\begin{cases}\left(x-3a\right)+\left(x-a\right)+\left(x+a\right)+\left(x+3a\right)=360^0\\\left(x+3a\right)=5\left(x-3a\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x=90^0\\a=20^0\end{cases}\)

Bốn góc phải tìm là : \(A=30^0;B=70^0;C=110^0;D=150^0\)