K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

Giải bài 65 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒EF // AC và EF = AC/2 (1)

HD = HA, GD = GC

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2 (2)

Từ (1) và (2) suy ra EF // HG và EF = HG

⇒ Tứ giác EFGH là hình bình hành (*)

EA = EB, HA = HD ⇒ EH là đường trung bình của ΔABD ⇒ EH // BD.

Mà EF // AC, AC ⊥ BD

⇒ EH ⊥ EF ⇒ Ê = 90º (**)

Từ (*) và (**) suy ra EFGH là hình chữ nhật.

30 tháng 6 2017

Hình chữ nhật

25 tháng 10 2017

Hình chữ nhật

7 tháng 10 2018

Sử dụng tính chất đường trung bình của tam giác

Chứng minh: HEFG là hình bình hành và EF ^ HE

Þ HEFG là hình chữ nhật.

25 tháng 10 2016

Xét tam giác ABC có: EB=EA (gt); BF=FC (gt)

\(\Rightarrow\)EF là đường trung bình của tam giác ABC

\(\Rightarrow\)EF//AC; EF=1/2AC (1)

Xét tam giác ADC có: AH=HD (gt); CG=DG (gt)

\(\Rightarrow\)HG là dường trung bình của tam giác ADC

\(\Rightarrow\)HG//AC; HG=1/2AC (2)

Từ (1) và (2) \(\Rightarrow\)EF//HG; EF=HG

\(\Rightarrow\)EFGH là hình bình hành

Ta có EH là đường trung bình của tam giác ABD

vì AE=EB; AH=HD

\(\Rightarrow\)EH//BD

mà AC\(\perp\) BD; EH=BD; EF//AC

\(\Rightarrow\)EF\(\perp\)EH hay E=\(90^0\)

Vậy EFGH là hình chữ nhật.

23 tháng 10 2016

chứng minh: EF là đương tb rồi =) EF song song vs AC và bằng một nữa AC.

tương tự chứng minh HG....

rồi +) tứ giác EFGH là hbh ( dấu hiệu 3)

mk chỉ gợi ý theess thôi. còn đâu bn tự làm nhá!

17 tháng 7 2017

xét tam giác ABC có :

EA = FB (gt)

FB = FC (gt)

\(\Rightarrow EF\) là đường trung bình

\(\Rightarrow\) EF // AC và EF = \(\dfrac{1}{2}\) AC (1)

chứng minh tương tự HG là đường trung bình tam giác ADC

HG // AC và HG = \(\dfrac{1}{2}\) AC (2)

từ (1) và (2) ta suy ra EF // HG và EF = HG

\(\Rightarrow\) EFGH là hình bình hành (3)

ta có : EF // AC

EH // BD ( EH là đường trung bình tam giác ABD )

AC \(\perp\) BD ( gt )

\(\Rightarrow\) EF \(\perp\) EH

hay góc E = 90 độ (4)

từ (3) và (4) ta suy ra EFGH là hình chữ nhật


Hỏi đáp Toán
21 tháng 4 2017

Bài giải:

Ta có EB = EA, FB = FC (gt)

Nên EF là đường trung bình của ∆ABC

Do đó EF // AC

HD = HA, GD = GC

Nên HG là đường trung bình của ∆ADC

Do đó HG // AC

Suy ra EF // HG

Tương tự EH // FG

Do đó EFGH là hình bình hành.

EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH hay ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.

15 tháng 4 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ ABC, ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của  ∆ ABC

⇒ EF // AC và EF = 1/2 AC (tính chất đường trung bình tam giác) (1)

* Trong  ∆ DAC, ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của  ∆ DAC.

⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Ta lại có: BD ⊥ AC (gt)

EF // AC (chứng minh trên)

Suy ra: EF ⊥ BD

Trong  ∆ ABD ta có EH là đường trung bình ⇒ EH // BD

Suy ra: EF ⊥ EH hay ∠ (FEH) = 90 0

Vậy hình bình hành EFGH là hình chữ nhật.