Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi A = 80°
B = 70°
D = 2C
=> C+D = 360 - 70 - 80 = 210
=> 2C + C = 210°
=> 3C = 210°
=> C = 70°
=> D = 70 × 2 = 140°
b) Ta có : A = B/2=C/4 = D/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có
=> A = 30°
=> B = 60°
=> C = 120°
=> D = 150°
Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°
Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 độ
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
Suy ra tam giác CED cân tại C , tức là CE = CD (2)
Từ (1) và (2) => đpcm
a) Tự áp dụng tính chất dãy tỉ số bằng nhau ta có :
A = 120°
B = 100°
C = 80°
D = 60°
b) Xét tứ giác ABCD có :
A + B + C + D = 360°
=> A = 360° - 60° - 120° - 80°= 100°
Góc ngoài tại A :
180° - 100° = 80°
c) Tổng quát :
Gọi góc ngoài tại A là HAD
Góc ngoài tại D là ADE
Góc ngoài tại B là CBG
Góc ngoài tại C là BCM
Ta có :
HAD = 180° - DAB
ADE = 180° ADC
CBG = 180° - ABC
BCM = 180° - BCD
=> HAD + ADE + CBG + BCM =
( 180° - DAB ) + ( 180° - ADC ) + ( 180° - ABC ) + ( 180° - BCD )
= ( 180° + 180° + 180° + 180°) - ( DAB + ACD + ABC + BCD )
= 720° - 360°
= 360°
=> Tổng các góc ngoài = 360°
d ) Nếu các góc trong tứ giác \(\le\)90°
=> Tổng 4 góc trong tứ giác đó sẽ \(\le\)360°
=> Không tồn tại tứ giác đều là góc nhọn
Nếu các góc trong tứ giác \(\ge\)90°
=> Tổng các góc trong tứ giác đó \(\ge\)360°
=> Không tồn tại tứ giác đều là góc tù
ta có góc A =góc B-200
góc C= x góc A=3 ( góc B-200)
góc D= góc C+200= 3( góc B -200)+200
mà góc A+góc B+góc C+ góc D=3600
=> góc B-200 +góc B +3x góc B -400 +3x góc B -600 =3600
8 góc B =4800
góc B=600
=> góc A=400
góc C =1200
góc D=1400
b) tứ giác ABCD có góc A+góc D =1800 => AB//DC ( tổng 2 góc trong cùng phía =1800)
=> ABCD là hình thang
Cho tứ giác ABCD, biết :
a) Tính các góc của tứ giác ABCD
b) Tứ giác ABCD có phải hình thang không? Vì sao?
Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=>\(\widehat{A}+\widehat{B}=360^0-70^0-80^0=210^0\)
mà \(\widehat{A}-\widehat{B}=20^0\)
nên \(\widehat{A}=\dfrac{210^0+20^0}{2}=115^0\)
=>\(\widehat{B}=115^0-20^0=95^0\)