K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

A B D C E

a) có AB// DC (gt)

mà E thuộc DC => AB // CE

=> \(\widehat{ABC}=\widehat{ECB}\)

có AC // BE (gt)

=>\(\widehat{ACB}=\widehat{EBC}\)

xét \(\Delta ABC\)\(\Delta ECB\)

có BC là cạnh chung

\(\widehat{ABC}=\widehat{ECB}\) (cmt)

\(\widehat{ACB}=\widehat{EBC}\) (cmt)

=> \(\Delta ABC=\Delta ECB\) (gcg)

=>BE = CA ( 2 cạnh tương ứng )

b) có AC = BD ( gt)

mà BE = CA (cmt)

=> BD = BE ( = CA)

=>\(\Delta BDE\) là tam giác cân tại B

a: Xét ΔACB và ΔEBC có

\(\widehat{ACB}=\widehat{EBC}\)

BC chung

\(\widehat{ABC}=\widehat{ECB}\)

Do đó: ΔACB=ΔEBC

b: Ta có: ΔACB=ΔEBC

nên AC=EB

=>BE=BD

hay ΔBED cân tại B

c: Ta có: ΔBED cân tại B

nên \(\widehat{BED}=\widehat{BDC}\)

=>\(\widehat{BDC}=\widehat{ACD}\)

d: Xét ΔACD và ΔBDC có

AC=BD

\(\widehat{ACD}=\widehat{BDC}\)

CD chung

DO đó: ΔACD=ΔBDC

e: Ta có: ΔACD=ΔBDC

nên \(\widehat{DAC}=\widehat{DBC}\)

f: Ta có: ΔACD=ΔBDC

nên \(\widehat{ADC}=\widehat{BCD}\)

=>ABCD là hình thang cân