K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

29 tháng 1 2019

22 tháng 6 2017

Ta có bảng biến thiên như hình vẽ bên.

Vì f( b) < 0  nên rõ ràng có nhiều nhất 2 giao điểm.

Chọn B.

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

22 tháng 2 2019

Đáp án C.

Cách giải:

Đặt y = f(x).g(x) = h(x). Khi đó:

h(0) = f(0).g(0) = 0.0 = 0

h(1) = f(1).g(1) = 1.(-1) = -1

Do đó, ta chọn phương án C

24 tháng 5 2019

Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.

 Dựa vào đồ thị hàm số y= f’(x) ; ta thấy đồ thị hàm số y= f’(x) là parabol có trục đối xứng là trục tung nên b= 0

+ Đồ thị hàm số y= f’(x)  đi qua 2 điểm (1; 5) và (0; 2)  ta tìm được: a=1 và c=2.

Suy ra: f’(x)  = 3x2+ 2 và f( x) = x3+ 2x+ d,

+ Do  đồ thị hàm số (C) đi qua gốc toạ độ nên 0=0+0+ d

Suy ra: d= 0.

 Khi đó ta có: f(x) =x3+ 2x và f( 3) –f(2) =21

Chọn D.

5 tháng 5 2018

24 tháng 5 2017

Chọn đáp án D

Do hàm số đạt cực đại tại điểm x=1 f′(1) = 0 và đường thẳng Δ qua hai điểm (0;−3);(1;0) nên có phương trình y=3x−3.

Δ là tiếp tuyến của đồ thị hàm số  f(x) tại điểm có hoành độ  x = 2 ⇒ f ' ( 2 ) = k △ =3

Vậy

 

 

 

11 tháng 3 2018