Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi A,B lần lượt là giao của In với Ox, Im với Oy
Xét tứ giác OAIB có
OA//IB
OB//IA
=>OAIB là hình bình hành
=>góc AOB=góc AIB
=>góc xOy=góc mIn
b: OA//IB và OB//IA
=>Mối quan hệ giữa các cặp cạnh của 2 góc đó là song song với nhau
tam giác ABC có chu vi bằng 140cm và các cạnh tỉ lệ với 20,21,29
a) tìm các cạnh của tam giác
b) có nhận xét gì về mối quan hệ giữa ba cạnh của tam giác ABC
tam giác ABC có chu vi bằng 140cm và các cạnh tỉ lệ với 20,21,29
a) tìm các cạnh của tam giác
b) có nhận xét gì về mối quan hệ giữa ba cạnh của tam giác ABC
love tfboys and exo and song jong ki
love tfboys and exo and song jong ki
\(hnha\)
Tổng số đo ba góc của tam giác MNP bằng 180o.
=> Tổng ba góc của một tam giác bất kì bằng 180o.
a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C
=> HB + HC = BC
∆AHC vuông tại H => HC < AC
∆AHB vuông tại H => HB < AB
Cộng theo vế hai bất đẳng thức ta có:
HB + HC < AC + AB
Hay BC < AC + AB
b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC
Do đó AB < BC + AC; AC < BC +AB
(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)
a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C
=> HB + HC = BC
∆AHC vuông tại H => HC < AC
∆AHB vuông tại H => HB < AB
Cộng theo vế hai bất đẳng thức ta có:
HB + HC < AC + AB
Hay BC < AC + AB
b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC
Do đó AB < BC + AC; AC < BC +AB
(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)
- Vì ∆ABC cân tại A, nên AB và AC là 2 cạnh bên
ð AB = AC = 2cm
- Vì ∆ABC cân tại A, nên góc B = góc C = 45 độ (2 góc đáy của một tam giac)
Ta có : góc A + góc B + góc C = 180 độ (tổng 3 góc trong một tam giac)
Góc A + 45 độ + 45 độ = 180 độ
ð Góc A = 180 độ - 45 độ - 45 độ
ð Góc A = 90
Nhận xét về ∆ABC :
Tam giác ∆ABC là tam giác vuông (vuông và cân tại A)
Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu độ dài hai cạnh còn lại và nhỏ hơn tổng độ dài hai cạnh còn lại
ΔABC sẽ có:
AB-AC<BC<AB+AC
AC-AB<BC<AB+AC
AB-BC<AC<AB+BC
BC-AB<AC<AB+BC
AC-CB<AB<AC+CB
CB-AC<AB<AC+CB