Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tứ giác PTOK có
\(PT\perp OT\Rightarrow\widehat{PTO}=90\)ĐỘ
\(PK\perp OK\Rightarrow\widehat{PKO}=90\)ĐỘ
\(\Rightarrow\widehat{PTO}+\widehat{PKO}=180\)ĐỘ
VẬY TỨ GIÁC PTOK NỘI TIẾP
B) TRONG ĐƯỜNG TRÒN (O;R) TA CÓ
\(\Rightarrow\widehat{PTA}\)LÀ GÓC TẠO BỞI TIA TIẾP TUYẾN VÀ DÂY CUNG CHẮN CUNG\(\widebat{TA}\)
\(\Rightarrow\widehat{PBT}\)LÀ GÓC NỘI TIẾP CHẮN CUNG \(\widebat{TA}\)
\(\Rightarrow\widehat{PTA}=\widehat{PBT}\)
XÉT \(\Delta PTA\)VÀ\(\Delta PBT\)CÓ
\(\widehat{P}\)CHUNG
\(\widehat{PTA}=\widehat{PBT}\left(cmt\right)\)
VẬY \(\Delta PTA\infty\Delta PBT\left(G-G\right)\)
\(\frac{\Rightarrow PT}{PB}=\frac{PA}{PT}\Rightarrow PT^2=PA.PB\left(đpcm\right)\)
ta có:OT=OK=R
PT=PK( tc 2 tt cắt nhau)
=> PO vuông góc vs TK
=> \(\widehat{OPT}=\widehat{PTK}\)=90 độ
=>\(\widehat{OTK}=\widehat{OPT}\)( cùng phụ với KTP)
mặt khác:
\(\widehat{OTK}=\widehat{OKT}\)( tam giác OTK cân tại O)
=> \(\widehat{OPT}=\widehat{OKT}\)
hơn nữa
\(\widehat{OAD}=\widehat{OPT}\)( đòng vị do AD//PT)
=>\(\widehat{OKT}=\widehat{OAD}\)
xét tam giác OCAK có 2 đỉnh liên tiế A, K cùng nhìn cạnh OC dưới 1 góc
=> tứ giác OCAK nội tiếp
=>^OCK=^OAK( gnt chắn cung OK)
Do: ^OAK=^BTK(gnt chắn cung BK)
=> ^OCK=^ BTK
=> OC//BT
=> tứ giác TCOB là hình thang
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tứ giác PTOK có:
^PTO=90 độ( PT là tt của đt tại T)
^ PKO =90 độ( PK là tt của đt tại K)
=> ^ PTO+^PKO=180 độ
=> Tứ giác PTOK nội tiếp
b, Xét tam giác PAT và tam giác PTB có:
^ TPB chung
^ PTA= ^PBT( góc tạo bởi tia tt và dây cung và gnt cùng chắn cung AT)
=> tam giác PAT đồng dạng vs tam giác PTB(g-g)
=> PT/PB=PA/PT
=>PT^2=PA*PB
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Tứ giác AEMC nội tiếp vì có 2 đối nhau góc ^EAC và ^EMC vuông.
Tứ giác BCMF nội tiếp vì có 2 đối nhau góc ^FBC và ^FMC vuông.
b)
^AMB=90º (góc nội tiếp (O) nhìn đường kính AB)
AEMC nội tiếp =>^MEC=^MAC.
BCMF nội tiếp =>^MFC=^MBC.
=>∆AMB~∆ECF (g.g) =>^ECF=^AMC =>ECF vuông tại C.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
MÌNH VỪA LÀM XONG
https://olm.vn/hoi-dap/detail/222325327879.html