Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAF vuông tại A và ΔMBE vuông tại B có
MA=MB
\(\widehat{AMF}=\widehat{BME}\)
Do đó: ΔMAF=ΔMBE
=>MF=ME
b:
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(1)
Ta có: MA=MB
=>M nằm trên đường trung trực của BA(2)
Từ (1) và (2) suy ra OM là đường trung trực của BA
=>OM\(\perp\)BA
a,b: Xét ΔOAM vuông tại A và ΔOBM vuông tạiB co
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>OA=OB và MA=MB
=>ΔOAB cân tại O
c: Xét ΔMAD vuông tại A và ΔMBE vuông tại B có
MA=MB
góc AMD=góc BME
=>ΔMAD=ΔMBE
=>MD=ME
a: Xét ΔOMA vuông tại A và ΔOMB vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOMA=ΔOMB
Suy ra: MA=MB và OA=OB
hay ΔOBA cân tại O
b: Xét ΔOAE vuông tại A và ΔOBD vuông tại B có
OA=OB
\(\widehat{AOE}\) chung
Do đó: ΔOAE=ΔOBD
Suy ra: OD=OE
Xét ΔMAD vuông tại A và ΔMBE vuông tại B có
AD=BE
\(\widehat{MDA}=\widehat{MEB}\)
Do đó: ΔMAD=ΔMBE
Suy ra: MD=ME
c: Ta có: ΔODE cân tại O
mà OM là phân giác
nên OM vuông góc với DE
b: Xét ΔOMA vuông tại A và ΔOMB vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
DO đó: ΔOMA=ΔOMB
Suy ra: OA=OB
hay ΔOAB cân tại O
c: Xét ΔOEF có
ON là đường cao
ON là đường phân giác
Do đó: ΔOEF cân tại O
Suy ra: OE=OF
Xét ΔOBA có
OE/OA=OF/OB
Do đó: EF//AB