K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ điểm M ở ngoài đường tròn(O;R) vẽ tiếp tuyến MA đến đường tròn.E là trung điểm AM ; I,H lần lượt là hình chiếu của E và A trên MO. Từ I vẽ tiếp tuyến IK với(O)

a.CMr I nằm ngoài đường tròn( O;R)

b. Qua M vẽ cát tuyến MBC(B nằm giữa M và C) chứng minh rằng tứ giác BHOC nội tiếp

c.CM: HA là tia phân giác của góc BHC và tam giác MIK cân

22 tháng 4 2020

tôi ko biết

lớp 9 chưa hok

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM: https://www.youtube.com/watch?v=sMvl8_N_N54

29 tháng 5 2018

giúp mk vs ạ mk đang cần gấp

13 tháng 4 2019

IK² = IO² - R² 
IH² = (MH/2)²= (MA²/2MO)² = (MO² - R²)²/(2MO)² 
∆MIK cân <=> IM = IK <=> IH = IK 
<=> (MO² - R²)² = 4MO²(IO² - R²) 
<=> (MO² + R²)² = (2.MO.IO)² 
<=> MO² + R² = 2MO.IO 
<=> R² = MO(2IO - MO) = MO.HO đúng

AH
Akai Haruma
Giáo viên
11 tháng 5 2019

Lời giải:
a)

Xét tam giác $MAB$ và $MCA$ có:

\(\widehat{M}\) chung

\(\widehat{MAB}=\widehat{MCA}\) (tính chất góc tạo bởi một dây cung và tiếp tuyến thì bằng góc nội tiếp chắn cung đó, ở đây là dây cung $AB$ và tiếp tuyến $AM$)

\(\Rightarrow \triangle MAB\sim \triangle MCA(g.g)\Rightarrow \frac{MA}{MC}=\frac{MB}{MA}\Rightarrow MA^2=MB.MC\)

(đpcm)

b)

Theo tính chất đường cao ta thấy \(\widehat{BDC}=\widehat{BEC}(=90^0)\)

Mà 2 góc này đều nhìn cạnh $BC$ nên tứ giác $DEBC$ nội tiếp.

\(\Rightarrow \widehat{AED}=\widehat{ACB}=\widehat{MCA}\)

\(\widehat{MCA}=\widehat{MAB}(cmt)\Rightarrow \widehat{AED}=\widehat{MAB}\). Hai góc này ở vị trí so le trong nên \(DE\parallel MA\)

c)

\(DE\parallel MA\Rightarrow FD\parallel MA\)

\(\Rightarrow \widehat{GFE}=\widehat{GAM}\) (so le trong)

\(\widehat{GAM}=\widehat{GBA}\) (góc tạo bởi tiếp tuyến $MA$ và dây cung $GA$ thì bằng góc nội tiếp chắn cung $GA$)

\(\Rightarrow \widehat{GFE}=\widehat{GBA}=\widehat{GBE}\). Hai góc này cùng nhìn cạnh $GE$ nên

tứ giác $GEBF$ nội tiếp

\(\Rightarrow \widehat{GFB}=180^0-\widehat{GEB}=\widehat{GEA}\). (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 5 2019

Hình vẽ:
Hình trụ. Hình nón. Hình cầu