Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: Đường tròn (O) có đường kính CD và điểm M thuộc cung CD => ^CMD = 900 => ^CMA = 900.
Đường tròn (O) có 2 tiếp tuyến AB và AC => AB=AC => \(\Delta\)ABC cân tại A
Mà AO là phân giác ^BAC (T/c 2 tiếp tuyến cắt nhau) => AO vuông góc BC hay AH vuông góc BC
=> ^AHC = 900
Xét tứ giác AMHC: ^AHC = ^CMA = 900 => Tứ giác AMHC nội tiếp đường tròn (đpcm).
b) Tứ giác AMHC nội tiếp đường tròn => ^AHM = ^ACM (Cùng chắn cung AM)
Xét \(\Delta\)ACD: ^ACD = 900; CM vuông góc AD => ^ACM = ^CDM
=> ^AHM = ^CDM (1)
Dễ thấy tứ giác BDCM nội tiếp (O) => ^CDM = ^CBM (2)
Từ (1) và (2) => ^AHM = ^CBM hay ^NHM = ^HBM
Mà ^NHM + ^BHM = 900 nên ^HBM + ^BHM = 900 => \(\Delta\)BMH vuông đỉnh M
=> ^HMN = 900 => ^HMC = ^NMA (Cùng phụ ^CMN)
Xét \(\Delta\)MHC và \(\Delta\)MNA: ^HMC = ^NMA (cmt); ^HCM = ^NAM (Do tứ giác AMHC nột tiếp)
=> \(\Delta\)MHC ~ \(\Delta\)MNA (g.g) => \(\frac{HC}{NA}=\frac{MH}{MN}\)hay \(\frac{NA}{HC}=\frac{MN}{MH}\)(3)
Dễ chứng minh: \(\Delta\)HMN ~ \(\Delta\)BMH (g.g) => \(\frac{HN}{BH}=\frac{MN}{HM}\)(4)
Từ (3) và (4) => \(\frac{NA}{HC}=\frac{HN}{BH}\).
Lại có: \(\Delta\)ABC cân tại A có đường cao AH => AH là đường trung tuyến => HC=BH
Từ đó suy ra: NA = HN => N là trung điểm của AH (đpcm).
a) Ta có △AOC vuông tại C
⇒sin^CAO=OC/OA
⇒CAOˆ=30°
Mà A là giao điểm của 2 tiếp tuyến của (O)
⇒BACˆ=2.OACˆ=2.30° =60° (1)
Và AB=AC(2)
Từ (1),(2)⇒△ABC đều
b) Ta có OD⊥OB
AB⊥OB
Suy ra OD//AB⇒OD//AE(3)
Chứng minh tương tự: OE//AD(4)
Tự (3),(4)⇒ADOE là hình bình hành
Ta có △AOC vuông tại C
⇒OABˆ+AOBˆ=90°
⇒AOBˆ=90° −OABˆ=90° −30° = 60°
Ta lại có:DOBˆ=90°
⇒DOAˆ+AOBˆ=90°
⇔DOAˆ+ 60°=90°
⇒ DOAˆ=30°
⇒OADˆ=DOAˆ =30°
⇒△DOA cân tại D⇒AD=DO
Mà ADOE là hình bình hành
Vậy ADOE là hình thoi
c) Ta gọi H là giao điểm hai đường chéo OA và DE của hình thoi ADOE
⇒OH=HA=OA/2=2R/2=R
⇒H nằm trên đường tròn (O)
Và AO⊥DE ⇒ OHDˆ= 90°
Vậy DE là tiếp tuyến của đường tròn (O) tại H
gọi E là giao điểm OA với đường tròn
OE vuông góc BC => E là điểm chính giữa cung BC =>sđEC=sđEB
xét đường tròn (O) có MKC là góc tạo bởi tiếp tuyến và dây
MKC=(sdCM-sdMB)/2=(sdCE+sdEM-sdMB)/2
=(sdEB+sdEM-sdMB)/2=(sdEM+sdEM)/2
=2.sdEM/2=sd EM
mà EOM=sdEM (góc ở tâm chắn cung EM )
=>MKC=EOM=>MKH=HOM
Mà 2 góc này cùng chắn HM=>tứ giác MHOK nội tiếp
=>OMK=OHK
tiếp tuyến AB và AC cắt nhau tại A =>OA là phân giác COB
mà tg COB cân (OB=OC=R)=>OA đồng thời là đường cao
=>OA vuông góc với BC=>OHK=90=>OMK=90
=>tgOMK vuông=>đpcm
1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
2: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
ΔDMC nội tiếp
DC là đường kính
Do đó: ΔDMC vuông tại M
=>CM\(\perp\)MD tại M
=>CM\(\perp\)AD tại M
Xét tứ giác AMHC có \(\widehat{AMC}=\widehat{AHC}=90^0\)
nên AMHC là tứ giác nội tiếp
phần b,c thì sao ạ ?