Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chắc ý bạn là ODBA nội tiếp,chứ ODBC không nội tiếp được
Trong (O) có EF là dây cung không đi qua O có D là trung điểm EF
\(\Rightarrow OD\bot EF\Rightarrow\angle ODA=90\Rightarrow\angle ODA=\angle OBA\Rightarrow ODBA\) nội tiếp
b) KC cắt AB tại G
Vì BK là đường kính \(\Rightarrow\angle BCK=90\Rightarrow\Delta BCG\) vuông tại C
có \(AC=AB\Rightarrow A\) là trung điểm GB
mà \(CM\parallel GB(\bot BK)\) \(\Rightarrow I\) là trung điểm CM (Thales thôi,bạn tự chứng minh nha)
a) tam giác ACB ~ tam giác ADB(g-g)
=>AB^2=AC*AD
còn AB^2=AH*AO thì theo hệ thức lượng
b) tam giác EOH=tam giác BOH( cạnh huyền cạnh góc vg)
=>EH=HB
=>EA=AB
=>tam giác AEO= tam giác ABO
=>OEA=ABO=90
a: Xét ΔABC và ΔADB có
\(\widehat{ABC}=\widehat{ADB}\)
\(\widehat{BAC}\) chung
Do đó: ΔABC\(\sim\)ΔADB
Suy ra: AB/AD=AC/AB
hay \(AB^2=AD\cdot AC\)
Điểm H ở đâu vậy bạn?
Ta có : MP = MQ (tính chất tiếp tuyến)
=> \(\Delta\) MPQ là tam giác cân
=> ^MPQ = ^MQP
mà ^MQP = ^MIP (2 góc nội tiếp cùng chắng cung MP)
=> ^MPQ = ^MIP => ^MPE = ^MIP
Xét \(\Delta\) MPE và \(\Delta\) MIP ta có :
M: góc chung
^MPE = ^MIP (cmt)
=> \(\Delta\)MPE đồng dạng \(\Delta\) MIP (g.g)
=> \(\frac{MP}{MI}=\frac{ME}{MB}\)
=> đpcm
ytyyty